|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- funsd |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-test |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: funsd |
|
type: funsd |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8972868217054264 |
|
- name: Recall |
|
type: recall |
|
value: 0.920019870839543 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9085111601667893 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8480922382027815 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-test |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8036 |
|
- Precision: 0.8973 |
|
- Recall: 0.9200 |
|
- F1: 0.9085 |
|
- Accuracy: 0.8481 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 5.26 | 100 | 0.5115 | 0.8071 | 0.8624 | 0.8338 | 0.8407 | |
|
| No log | 10.53 | 200 | 0.4661 | 0.8730 | 0.9086 | 0.8905 | 0.8546 | |
|
| No log | 15.79 | 300 | 0.5613 | 0.8914 | 0.9091 | 0.9001 | 0.8552 | |
|
| No log | 21.05 | 400 | 0.6767 | 0.8937 | 0.8982 | 0.8959 | 0.8507 | |
|
| 0.3022 | 26.32 | 500 | 0.7020 | 0.8935 | 0.9165 | 0.9049 | 0.8626 | |
|
| 0.3022 | 31.58 | 600 | 0.7108 | 0.9040 | 0.9220 | 0.9129 | 0.8591 | |
|
| 0.3022 | 36.84 | 700 | 0.7378 | 0.9049 | 0.9175 | 0.9112 | 0.8517 | |
|
| 0.3022 | 42.11 | 800 | 0.7892 | 0.9026 | 0.9210 | 0.9117 | 0.8537 | |
|
| 0.3022 | 47.37 | 900 | 0.8133 | 0.8995 | 0.9205 | 0.9099 | 0.8490 | |
|
| 0.0223 | 52.63 | 1000 | 0.8036 | 0.8973 | 0.9200 | 0.9085 | 0.8481 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|