|
--- |
|
license: apache-2.0 |
|
--- |
|
### BioinspiredZephyr-7B: Large Language Model for the Mechanics of Biological and Bio-Inspired Materials |
|
|
|
To accelerate discovery and guide insights, we report an open-source autoregressive transformer large language model (LLM), trained on expert knowledge in the biological materials field, especially focused on mechanics and structural properties. |
|
|
|
The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. |
|
|
|
The model is based on HuggingFaceH4/zephyr-7b-beta. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/bsqBByauWBZ0Y8PspthR8.png) |
|
|
|
This model is based on work reported in https://doi.org/10.1002/advs.202306724. |
|
|
|
This repository includes both, Hugging Face transformers and GGUF files (in different versions, the q5_K_M is recommended). |
|
|
|
#### Hugging Face transformers files: Loading and inference |
|
|
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from accelerate import infer_auto_device_map |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
device_map="auto", #device_map="cuda:0", |
|
torch_dtype= torch.bfloat16, |
|
# use_flash_attention_2=True, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
``` |
|
Chat template |
|
``` |
|
messages = [ |
|
{"role": "system", "content": "You are a friendly materials scientist."}, |
|
{"role": "user", "content": "What is the strongest spider silk material?"}, |
|
{"role": "assistant", "content": "Sample response."}, |
|
] |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
``` |
|
|
|
'<|system|>\nYou are a friendly materials scientist.</s>\n<|user|>\nWhat is the strongest spider silk material?</s>\n<|assistant|>\nSample response.</s>\n<|assistant|>\n' |
|
|
|
``` |
|
device='cuda' |
|
def generate_response (text_input="Biological materials offer amazing possibilities, such as", |
|
num_return_sequences=1, |
|
temperature=1., |
|
max_new_tokens=127, |
|
num_beams=1, |
|
top_k = 50, |
|
top_p =0.9,repetition_penalty=1.,eos_token_id=2,verbatim=False, |
|
exponential_decay_length_penalty_fac=None, |
|
): |
|
|
|
inputs = tokenizer.encode(text_input, add_special_tokens =False, return_tensors ='pt') |
|
if verbatim: |
|
print ("Length of input, tokenized: ", inputs.shape, inputs) |
|
with torch.no_grad(): |
|
outputs = model.generate(input_ids=inputs.to(device), |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, #value used to modulate the next token probabilities. |
|
num_beams=num_beams, |
|
top_k = top_k, |
|
top_p =top_p, |
|
num_return_sequences = num_return_sequences, eos_token_id=eos_token_id, |
|
do_sample =True, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
return tokenizer.batch_decode(outputs[:,inputs.shape[1]:].detach().cpu().numpy(), skip_special_tokens=True) |
|
|
|
``` |
|
Then: |
|
``` |
|
messages = [ |
|
{"role": "system", "content": "You are a friendly materials scientist."}, |
|
{"role": "user", "content": "What is the strongest spider silk material?"}, |
|
] |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
|
output_text=generate_response (text_input=prompt, eos_token_id=eos_token, |
|
num_return_sequences=1, repetition_penalty=1., |
|
top_p=0.9, top_k=512, |
|
temperature=0.1,max_new_tokens=512, verbatim=False, |
|
) |
|
print (output_text) |
|
``` |
|
|
|
#### GGUF files: Loading and inference |
|
|
|
``` |
|
from llama_cpp import Llama |
|
|
|
model_path='./BioinspiredZephyr-7B/ggml-model-q5_K_M.gguf' |
|
chat_format="mistral-instruct" |
|
|
|
llm = Llama(model_path=model_path, |
|
n_gpu_layers=-1,verbose= True, |
|
n_ctx=10000, |
|
#main_gpu=0, |
|
chat_format=chat_format, |
|
#split_mode=llama_cpp.LLAMA_SPLIT_LAYER |
|
) |
|
``` |
|
|
|
Or, download directly from Hugging Face: |
|
|
|
``` |
|
from llama_cpp import Llama |
|
|
|
model_path='lamm-mit/BioinspiredZephyr-7B/ggml-model-q5_K_M.gguf' |
|
chat_format="mistral-instruct" |
|
|
|
llm = Llama.from_pretrained( |
|
repo_id=model_path, |
|
filename="*q5_K_M.gguf", |
|
verbose=True, |
|
n_gpu_layers=-1, |
|
n_ctx=10000, |
|
#main_gpu=0, |
|
chat_format=chat_format, |
|
) |
|
``` |
|
For inference: |
|
``` |
|
def generate_BioinspiredZephyr_7B(system_prompt='You are an expert in biological materials, mechanics and related topics.', |
|
prompt="What is spider silk?", |
|
temperature=0.0, |
|
max_tokens=10000, |
|
): |
|
if system_prompt==None: |
|
messages=[ |
|
{"role": "user", "content": prompt}, |
|
] |
|
else: |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
|
|
result=llm.create_chat_completion( |
|
messages=messages, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
) |
|
|
|
start_time = time.time() |
|
result=generate_BioinspiredZephyr_7B(system_prompt='You respond accurately.', |
|
prompt="What is graphene? Answer with detail.", |
|
max_tokens=512, temperature=0.7, ) |
|
print (result) |
|
deltat=time.time() - start_time |
|
print("--- %s seconds ---" % deltat) |
|
toked=tokenizer(res) |
|
print ("Tokens per second (generation): ", len (toked['input_ids'])/deltat) |
|
``` |