metadata
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
model-index:
- name: text_shortening_model_v70
results: []
text_shortening_model_v70
This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1285
- Bert precision: 0.8931
- Bert recall: 0.8981
- Bert f1-score: 0.8951
- Average word count: 6.5696
- Max word count: 16
- Min word count: 2
- Average token count: 10.6276
- % shortened texts with length > 12: 1.8018
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Bert precision | Bert recall | Bert f1-score | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
2.1122 | 1.0 | 37 | 1.5033 | 0.8698 | 0.8713 | 0.87 | 6.6056 | 16 | 0 | 10.4705 | 3.003 |
1.5423 | 2.0 | 74 | 1.3536 | 0.8779 | 0.8809 | 0.8788 | 6.6286 | 16 | 2 | 10.5696 | 1.8018 |
1.4111 | 3.0 | 111 | 1.2926 | 0.8805 | 0.8849 | 0.8821 | 6.6446 | 16 | 2 | 10.5586 | 2.002 |
1.3269 | 4.0 | 148 | 1.2394 | 0.8852 | 0.8889 | 0.8865 | 6.5636 | 15 | 2 | 10.5175 | 1.4014 |
1.2566 | 5.0 | 185 | 1.2094 | 0.884 | 0.8889 | 0.8859 | 6.6787 | 16 | 2 | 10.6226 | 2.2022 |
1.1991 | 6.0 | 222 | 1.1820 | 0.8848 | 0.8899 | 0.8868 | 6.6747 | 16 | 2 | 10.6266 | 2.3023 |
1.1567 | 7.0 | 259 | 1.1627 | 0.8849 | 0.8916 | 0.8878 | 6.7908 | 16 | 2 | 10.7067 | 2.002 |
1.1126 | 8.0 | 296 | 1.1560 | 0.8866 | 0.8936 | 0.8896 | 6.7638 | 16 | 2 | 10.7598 | 2.1021 |
1.0722 | 9.0 | 333 | 1.1501 | 0.889 | 0.8944 | 0.8912 | 6.6807 | 16 | 2 | 10.6456 | 2.1021 |
1.0455 | 10.0 | 370 | 1.1384 | 0.8876 | 0.8946 | 0.8906 | 6.7117 | 16 | 2 | 10.7317 | 2.002 |
1.0111 | 11.0 | 407 | 1.1220 | 0.8907 | 0.8951 | 0.8924 | 6.5706 | 16 | 2 | 10.5425 | 1.5015 |
0.9804 | 12.0 | 444 | 1.1243 | 0.8912 | 0.8963 | 0.8933 | 6.5766 | 16 | 2 | 10.5836 | 1.6016 |
0.9509 | 13.0 | 481 | 1.1256 | 0.8898 | 0.8959 | 0.8924 | 6.6226 | 16 | 2 | 10.6366 | 1.9019 |
0.9295 | 14.0 | 518 | 1.1206 | 0.8896 | 0.8972 | 0.8929 | 6.7287 | 16 | 2 | 10.7788 | 2.3023 |
0.9137 | 15.0 | 555 | 1.1172 | 0.8917 | 0.895 | 0.8929 | 6.5175 | 16 | 2 | 10.4885 | 1.7017 |
0.9016 | 16.0 | 592 | 1.1218 | 0.8902 | 0.8978 | 0.8935 | 6.7237 | 16 | 2 | 10.7608 | 1.9019 |
0.8654 | 17.0 | 629 | 1.1171 | 0.8913 | 0.8966 | 0.8934 | 6.5946 | 16 | 2 | 10.6166 | 2.002 |
0.8562 | 18.0 | 666 | 1.1194 | 0.8916 | 0.8973 | 0.8939 | 6.6186 | 16 | 2 | 10.6607 | 2.002 |
0.8337 | 19.0 | 703 | 1.1235 | 0.8921 | 0.8989 | 0.895 | 6.7027 | 16 | 2 | 10.7658 | 1.8018 |
0.8323 | 20.0 | 740 | 1.1153 | 0.8914 | 0.8977 | 0.8941 | 6.6607 | 16 | 2 | 10.6917 | 1.8018 |
0.8146 | 21.0 | 777 | 1.1142 | 0.8929 | 0.8966 | 0.8943 | 6.5315 | 16 | 2 | 10.5536 | 1.7017 |
0.8053 | 22.0 | 814 | 1.1211 | 0.8923 | 0.8983 | 0.8948 | 6.6747 | 16 | 2 | 10.7407 | 2.1021 |
0.7858 | 23.0 | 851 | 1.1164 | 0.8928 | 0.8969 | 0.8944 | 6.5355 | 16 | 2 | 10.5706 | 1.6016 |
0.7795 | 24.0 | 888 | 1.1157 | 0.8942 | 0.8983 | 0.8958 | 6.5556 | 16 | 2 | 10.6016 | 1.7017 |
0.7603 | 25.0 | 925 | 1.1231 | 0.8935 | 0.8984 | 0.8955 | 6.5826 | 16 | 2 | 10.6486 | 1.7017 |
0.7709 | 26.0 | 962 | 1.1231 | 0.8932 | 0.8979 | 0.8951 | 6.6006 | 16 | 2 | 10.6396 | 2.002 |
0.7528 | 27.0 | 999 | 1.1217 | 0.8929 | 0.8973 | 0.8946 | 6.5506 | 16 | 2 | 10.5876 | 1.9019 |
0.7436 | 28.0 | 1036 | 1.1222 | 0.8933 | 0.8991 | 0.8957 | 6.5696 | 16 | 2 | 10.6587 | 2.002 |
0.7406 | 29.0 | 1073 | 1.1284 | 0.8928 | 0.898 | 0.8949 | 6.5636 | 16 | 2 | 10.6406 | 1.9019 |
0.7326 | 30.0 | 1110 | 1.1278 | 0.8932 | 0.8988 | 0.8956 | 6.6216 | 16 | 2 | 10.6977 | 1.9019 |
0.7253 | 31.0 | 1147 | 1.1273 | 0.893 | 0.8986 | 0.8953 | 6.5856 | 16 | 2 | 10.6537 | 1.7017 |
0.7245 | 32.0 | 1184 | 1.1274 | 0.8935 | 0.8985 | 0.8955 | 6.5586 | 16 | 2 | 10.6216 | 1.7017 |
0.7082 | 33.0 | 1221 | 1.1281 | 0.8935 | 0.8987 | 0.8956 | 6.5826 | 16 | 2 | 10.6597 | 1.8018 |
0.7011 | 34.0 | 1258 | 1.1265 | 0.8936 | 0.8985 | 0.8956 | 6.5696 | 16 | 2 | 10.6517 | 1.8018 |
0.7099 | 35.0 | 1295 | 1.1284 | 0.8935 | 0.8987 | 0.8956 | 6.5656 | 16 | 2 | 10.6396 | 1.6016 |
0.7064 | 36.0 | 1332 | 1.1281 | 0.8939 | 0.8992 | 0.896 | 6.5696 | 16 | 2 | 10.6476 | 1.8018 |
0.7045 | 37.0 | 1369 | 1.1286 | 0.8932 | 0.8978 | 0.895 | 6.5556 | 16 | 2 | 10.5976 | 1.8018 |
0.702 | 38.0 | 1406 | 1.1275 | 0.8934 | 0.8984 | 0.8954 | 6.5776 | 16 | 2 | 10.6296 | 1.8018 |
0.6952 | 39.0 | 1443 | 1.1284 | 0.8933 | 0.8981 | 0.8952 | 6.5586 | 16 | 2 | 10.6146 | 1.8018 |
0.6928 | 40.0 | 1480 | 1.1285 | 0.8931 | 0.8981 | 0.8951 | 6.5696 | 16 | 2 | 10.6276 | 1.8018 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3