metadata
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text_shortening_model_v8
results: []
text_shortening_model_v8
This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3248
- Rouge1: 0.43
- Rouge2: 0.2172
- Rougel: 0.3684
- Rougelsum: 0.3674
- Bert precision: 0.8551
- Bert recall: 0.8369
- Average word count: 9.8214
- Max word count: 17
- Min word count: 5
- Average token count: 15.5857
- % shortened texts with length > 12: 17.1429
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2688 | 1.0 | 8 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.284 | 2.0 | 16 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.264 | 3.0 | 24 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2564 | 4.0 | 32 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2727 | 5.0 | 40 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2924 | 6.0 | 48 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2666 | 7.0 | 56 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2662 | 8.0 | 64 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2631 | 9.0 | 72 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2844 | 10.0 | 80 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2653 | 11.0 | 88 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2649 | 12.0 | 96 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2972 | 13.0 | 104 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2553 | 14.0 | 112 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.261 | 15.0 | 120 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2832 | 16.0 | 128 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2635 | 17.0 | 136 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2484 | 18.0 | 144 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2612 | 19.0 | 152 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2996 | 20.0 | 160 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2562 | 21.0 | 168 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2503 | 22.0 | 176 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2763 | 23.0 | 184 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2692 | 24.0 | 192 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.284 | 25.0 | 200 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2838 | 26.0 | 208 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2729 | 27.0 | 216 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2685 | 28.0 | 224 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2599 | 29.0 | 232 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2829 | 30.0 | 240 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2275 | 31.0 | 248 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2605 | 32.0 | 256 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2855 | 33.0 | 264 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.251 | 34.0 | 272 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2629 | 35.0 | 280 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2679 | 36.0 | 288 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2453 | 37.0 | 296 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2853 | 38.0 | 304 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2542 | 39.0 | 312 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2627 | 40.0 | 320 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2668 | 41.0 | 328 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2742 | 42.0 | 336 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2746 | 43.0 | 344 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2768 | 44.0 | 352 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2729 | 45.0 | 360 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2729 | 46.0 | 368 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2788 | 47.0 | 376 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.286 | 48.0 | 384 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2484 | 49.0 | 392 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
0.2679 | 50.0 | 400 | 2.3248 | 0.43 | 0.2172 | 0.3684 | 0.3674 | 0.8551 | 0.8369 | 9.8214 | 17 | 5 | 15.5857 | 17.1429 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3