lora_fine_tuned_cb / README.md
lenatr99's picture
lora_fine_tuned_cb
b2c677a verified
|
raw
history blame
1.99 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: google-bert/bert-base-uncased
metrics:
  - accuracy
  - f1
model-index:
  - name: lora_fine_tuned_cb
    results: []

lora_fine_tuned_cb

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4089
  • Accuracy: 0.3182
  • F1: 0.1536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9467 3.5714 50 1.1690 0.3182 0.1536
0.7755 7.1429 100 1.2983 0.3182 0.1536
0.7396 10.7143 150 1.3709 0.3182 0.1536
0.6894 14.2857 200 1.3939 0.3182 0.1536
0.7253 17.8571 250 1.4084 0.3182 0.1536
0.7187 21.4286 300 1.4133 0.3182 0.1536
0.6998 25.0 350 1.4096 0.3182 0.1536
0.7152 28.5714 400 1.4089 0.3182 0.1536

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1