leo-kwan's picture
End of training
063a4c4 verified
metadata
base_model: m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-100k-gtzan-music-genres-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.98

wav2vec2-base-100k-gtzan-music-genres-finetuned-gtzan

This model is a fine-tuned version of m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6843
  • Accuracy: 0.98

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1932 0.9976 53 2.1037 0.82
1.9212 1.9953 106 1.8040 0.8267
1.6379 2.9929 159 1.5650 0.8667
1.4604 3.9906 212 1.3201 0.9267
1.2249 4.9882 265 1.1253 0.94
1.075 5.9859 318 0.9814 0.96
0.911 6.9835 371 0.8447 0.9667
0.852 8.0 425 0.7628 0.9667
0.7625 8.9976 478 0.7117 0.9733
0.7099 9.9765 530 0.6843 0.98

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1