MBX-7B-v3-DPO
This model is a finetune of flemmingmiguel/MBX-7B-v3 using jondurbin/truthy-dpo-v0.1
Code Example
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
messages = [
{"role": "system", "content": "Respond to the users request like a pirate"},
{"role": "user", "content": "Can you write me a quicksort algorithm?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
Example Output
GGUF
Available here
Exllamav2
Quants are available from bartowski, check them out here
Download the size you want below, VRAM figures are estimates.
Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
---|---|---|---|---|---|---|
8_0 | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
6_5 | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, recommended. |
5_0 | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
4_25 | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
3_5 | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |
Evaluations
EQ-Bench Comparison
----Benchmark Complete---- 2024-01-30 15:22:18 Time taken: 145.9 mins Prompt Format: ChatML Model: macadeliccc/MBX-7B-v3-DPO Score (v2): 74.32 Parseable: 166.0 --------------- Batch completed Time taken: 145.9 mins ---------------
Original Model
----Benchmark Complete---- 2024-01-31 01:26:26 Time taken: 89.1 mins Prompt Format: Mistral Model: flemmingmiguel/MBX-7B-v3 Score (v2): 73.87 Parseable: 168.0 --------------- Batch completed Time taken: 89.1 mins ---------------
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
MBX-7B-v3-DPO | 45.16 | 77.73 | 74.62 | 48.83 | 61.58 |
AGIEval
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 27.95 | Β± | 2.82 |
acc_norm | 26.77 | Β± | 2.78 | ||
agieval_logiqa_en | 0 | acc | 41.01 | Β± | 1.93 |
acc_norm | 40.55 | Β± | 1.93 | ||
agieval_lsat_ar | 0 | acc | 25.65 | Β± | 2.89 |
acc_norm | 23.91 | Β± | 2.82 | ||
agieval_lsat_lr | 0 | acc | 50.78 | Β± | 2.22 |
acc_norm | 52.94 | Β± | 2.21 | ||
agieval_lsat_rc | 0 | acc | 66.54 | Β± | 2.88 |
acc_norm | 65.80 | Β± | 2.90 | ||
agieval_sat_en | 0 | acc | 77.67 | Β± | 2.91 |
acc_norm | 77.67 | Β± | 2.91 | ||
agieval_sat_en_without_passage | 0 | acc | 43.20 | Β± | 3.46 |
acc_norm | 43.20 | Β± | 3.46 | ||
agieval_sat_math | 0 | acc | 32.27 | Β± | 3.16 |
acc_norm | 30.45 | Β± | 3.11 |
Average: 45.16%
GPT4All
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 68.43 | Β± | 1.36 |
acc_norm | 68.34 | Β± | 1.36 | ||
arc_easy | 0 | acc | 87.54 | Β± | 0.68 |
acc_norm | 82.11 | Β± | 0.79 | ||
boolq | 1 | acc | 88.20 | Β± | 0.56 |
hellaswag | 0 | acc | 69.76 | Β± | 0.46 |
acc_norm | 87.40 | Β± | 0.33 | ||
openbookqa | 0 | acc | 40.20 | Β± | 2.19 |
acc_norm | 49.60 | Β± | 2.24 | ||
piqa | 0 | acc | 83.68 | Β± | 0.86 |
acc_norm | 85.36 | Β± | 0.82 | ||
winogrande | 0 | acc | 83.11 | Β± | 1.05 |
Average: 77.73%
TruthfulQA
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 58.87 | Β± | 1.72 |
mc2 | 74.62 | Β± | 1.44 |
Average: 74.62%
Bigbench
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_causal_judgement | 0 | multiple_choice_grade | 60.00 | Β± | 3.56 |
bigbench_date_understanding | 0 | multiple_choice_grade | 63.14 | Β± | 2.51 |
bigbench_disambiguation_qa | 0 | multiple_choice_grade | 47.67 | Β± | 3.12 |
bigbench_geometric_shapes | 0 | multiple_choice_grade | 22.56 | Β± | 2.21 |
exact_str_match | 0.84 | Β± | 0.48 | ||
bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 33.20 | Β± | 2.11 |
bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 23.00 | Β± | 1.59 |
bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 59.67 | Β± | 2.84 |
bigbench_movie_recommendation | 0 | multiple_choice_grade | 47.40 | Β± | 2.24 |
bigbench_navigate | 0 | multiple_choice_grade | 56.10 | Β± | 1.57 |
bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 71.25 | Β± | 1.01 |
bigbench_ruin_names | 0 | multiple_choice_grade | 56.47 | Β± | 2.35 |
bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 35.27 | Β± | 1.51 |
bigbench_snarks | 0 | multiple_choice_grade | 73.48 | Β± | 3.29 |
bigbench_sports_understanding | 0 | multiple_choice_grade | 75.46 | Β± | 1.37 |
bigbench_temporal_sequences | 0 | multiple_choice_grade | 52.10 | Β± | 1.58 |
bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 22.64 | Β± | 1.18 |
bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 19.83 | Β± | 0.95 |
bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 59.67 | Β± | 2.84 |
Average: 48.83%
Average score: 61.58%
Elapsed time: 02:37:39
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 76.13 |
AI2 Reasoning Challenge (25-Shot) | 73.55 |
HellaSwag (10-Shot) | 89.11 |
MMLU (5-Shot) | 64.91 |
TruthfulQA (0-shot) | 74.00 |
Winogrande (5-shot) | 85.56 |
GSM8k (5-shot) | 69.67 |
- Downloads last month
- 95
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for macadeliccc/MBX-7B-v3-DPO
Dataset used to train macadeliccc/MBX-7B-v3-DPO
Spaces using macadeliccc/MBX-7B-v3-DPO 6
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard73.550
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard89.110
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.910
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard74.000
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard85.560
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard69.670