metadata
license: cc
library_name: transformers
datasets:
- jondurbin/truthy-dpo-v0.1
model-index:
- name: MBX-7B-v3-DPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.55
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.11
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.91
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 74
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 85.56
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.67
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
MBX-7B-v3-DPO
This model is a finetune of flemmingmiguel/MBX-7B-v3 using jondurbin/truthy-dpo-v0.1
Code Example
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
messages = [
{"role": "system", "content": "Respond to the users request like a pirate"},
{"role": "user", "content": "Can you write me a quicksort algorithm?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
Example Output
GGUF
Available here
Exllamav2
Quants are available from bartowski, check them out here
Download the size you want below, VRAM figures are estimates.
Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
---|---|---|---|---|---|---|
8_0 | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
6_5 | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, recommended. |
5_0 | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
4_25 | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
3_5 | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |
Evaluations
EQ-Bench Comparison
----Benchmark Complete---- 2024-01-30 15:22:18 Time taken: 145.9 mins Prompt Format: ChatML Model: macadeliccc/MBX-7B-v3-DPO Score (v2): 74.32 Parseable: 166.0 --------------- Batch completed Time taken: 145.9 mins ---------------
Original Model
----Benchmark Complete---- 2024-01-31 01:26:26 Time taken: 89.1 mins Prompt Format: Mistral Model: flemmingmiguel/MBX-7B-v3 Score (v2): 73.87 Parseable: 168.0 --------------- Batch completed Time taken: 89.1 mins ---------------
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
MBX-7B-v3-DPO | 45.16 | 77.73 | 74.62 | 48.83 | 61.58 |
AGIEval
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 27.95 | ± | 2.82 |
acc_norm | 26.77 | ± | 2.78 | ||
agieval_logiqa_en | 0 | acc | 41.01 | ± | 1.93 |
acc_norm | 40.55 | ± | 1.93 | ||
agieval_lsat_ar | 0 | acc | 25.65 | ± | 2.89 |
acc_norm | 23.91 | ± | 2.82 | ||
agieval_lsat_lr | 0 | acc | 50.78 | ± | 2.22 |
acc_norm | 52.94 | ± | 2.21 | ||
agieval_lsat_rc | 0 | acc | 66.54 | ± | 2.88 |
acc_norm | 65.80 | ± | 2.90 | ||
agieval_sat_en | 0 | acc | 77.67 | ± | 2.91 |
acc_norm | 77.67 | ± | 2.91 | ||
agieval_sat_en_without_passage | 0 | acc | 43.20 | ± | 3.46 |
acc_norm | 43.20 | ± | 3.46 | ||
agieval_sat_math | 0 | acc | 32.27 | ± | 3.16 |
acc_norm | 30.45 | ± | 3.11 |
Average: 45.16%
GPT4All
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 68.43 | ± | 1.36 |
acc_norm | 68.34 | ± | 1.36 | ||
arc_easy | 0 | acc | 87.54 | ± | 0.68 |
acc_norm | 82.11 | ± | 0.79 | ||
boolq | 1 | acc | 88.20 | ± | 0.56 |
hellaswag | 0 | acc | 69.76 | ± | 0.46 |
acc_norm | 87.40 | ± | 0.33 | ||
openbookqa | 0 | acc | 40.20 | ± | 2.19 |
acc_norm | 49.60 | ± | 2.24 | ||
piqa | 0 | acc | 83.68 | ± | 0.86 |
acc_norm | 85.36 | ± | 0.82 | ||
winogrande | 0 | acc | 83.11 | ± | 1.05 |
Average: 77.73%
TruthfulQA
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 58.87 | ± | 1.72 |
mc2 | 74.62 | ± | 1.44 |
Average: 74.62%
Bigbench
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_causal_judgement | 0 | multiple_choice_grade | 60.00 | ± | 3.56 |
bigbench_date_understanding | 0 | multiple_choice_grade | 63.14 | ± | 2.51 |
bigbench_disambiguation_qa | 0 | multiple_choice_grade | 47.67 | ± | 3.12 |
bigbench_geometric_shapes | 0 | multiple_choice_grade | 22.56 | ± | 2.21 |
exact_str_match | 0.84 | ± | 0.48 | ||
bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 33.20 | ± | 2.11 |
bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 23.00 | ± | 1.59 |
bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 59.67 | ± | 2.84 |
bigbench_movie_recommendation | 0 | multiple_choice_grade | 47.40 | ± | 2.24 |
bigbench_navigate | 0 | multiple_choice_grade | 56.10 | ± | 1.57 |
bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 71.25 | ± | 1.01 |
bigbench_ruin_names | 0 | multiple_choice_grade | 56.47 | ± | 2.35 |
bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 35.27 | ± | 1.51 |
bigbench_snarks | 0 | multiple_choice_grade | 73.48 | ± | 3.29 |
bigbench_sports_understanding | 0 | multiple_choice_grade | 75.46 | ± | 1.37 |
bigbench_temporal_sequences | 0 | multiple_choice_grade | 52.10 | ± | 1.58 |
bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 22.64 | ± | 1.18 |
bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 19.83 | ± | 0.95 |
bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 59.67 | ± | 2.84 |
Average: 48.83%
Average score: 61.58%
Elapsed time: 02:37:39
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 76.13 |
AI2 Reasoning Challenge (25-Shot) | 73.55 |
HellaSwag (10-Shot) | 89.11 |
MMLU (5-Shot) | 64.91 |
TruthfulQA (0-shot) | 74.00 |
Winogrande (5-shot) | 85.56 |
GSM8k (5-shot) | 69.67 |