Whisper Medium Hi -megha sharma

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3496
  • Wer: 18.2839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 9000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0311 3.3898 1000 0.2263 20.5584
0.0109 6.7797 2000 0.2669 20.4412
0.0026 10.1695 3000 0.2998 19.6408
0.0018 13.5593 4000 0.2947 18.8208
0.0002 16.9492 5000 0.3169 18.8012
0.0 20.3390 6000 0.3288 18.2058
0.0 23.7288 7000 0.3401 18.1667
0.0 27.1186 8000 0.3469 18.2741
0.0 30.5085 9000 0.3496 18.2839

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
764M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for meg51/whisper-medium-hi

Finetuned
(470)
this model

Dataset used to train meg51/whisper-medium-hi

Evaluation results