whisper-medium-hi / README.md
meg51's picture
Upload tokenizer
0f84aae verified
metadata
base_model: openai/whisper-medium
datasets:
  - google/fleurs
language:
  - hi
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Medium Hi -megha sharma
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: hi_in
          split: None
          args: 'config: hi, split: test'
        metrics:
          - type: wer
            value: 18.283873486919173
            name: Wer

Whisper Medium Hi -megha sharma

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3496
  • Wer: 18.2839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 9000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0311 3.3898 1000 0.2263 20.5584
0.0109 6.7797 2000 0.2669 20.4412
0.0026 10.1695 3000 0.2998 19.6408
0.0018 13.5593 4000 0.2947 18.8208
0.0002 16.9492 5000 0.3169 18.8012
0.0 20.3390 6000 0.3288 18.2058
0.0 23.7288 7000 0.3401 18.1667
0.0 27.1186 8000 0.3469 18.2741
0.0 30.5085 9000 0.3496 18.2839

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1