meg51's picture
Upload tokenizer
efc5319 verified
metadata
base_model: openai/whisper-medium
datasets:
  - google/fleurs
language:
  - hi
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Medium Hindi -megha sharma
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: hi_in
          split: None
          args: 'config: hi, split: test'
        metrics:
          - type: wer
            value: 18.44006247559547
            name: Wer

Whisper Medium Hindi -megha sharma

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3508
  • Wer: 18.4401

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 15000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0669 3.3898 1000 0.2077 20.9098
0.0118 6.7797 2000 0.2657 19.4162
0.0026 10.1695 3000 0.2930 18.9477
0.0018 13.5593 4000 0.3045 18.3717
0.0017 16.9492 5000 0.3281 18.7134
0.0011 20.3390 6000 0.3288 18.1179
0.0005 23.7288 7000 0.3398 18.3034
0.0004 27.1186 8000 0.3515 18.5182
0.0003 30.5085 9000 0.3508 18.4401

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1