|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 지푸드박스 제이엔제이트레이드 코코엘 유기농 엑스트라버진 코코넛오일 필리핀산 415ml 헬시푸드몰 |
|
- text: CJ 백설 2통 이상 구매시 할인 쿠폰 콩기름 식용유 대두유 18L 이츠웰 해표 오뚜기 롯데 식용유 말통 전국 최저가판매 식용유_오뚜기식용유 |
|
주식회사 황금알에프앤오 |
|
- text: 올리타리아 엑스트라버진 올리브오일 1L 카비스 |
|
- text: 커클랜드 시그니춰 카놀라유 오일 2.83L 커클랜드 카놀라유2.83L 베이비파크 |
|
- text: 해표)고추맛기름 1.8L 에스엠(SM)식자재도매센터 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.9926900584795322 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 9 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 6.0 | <ul><li>'사조해표 해표 고급유 2호 선물세트 풀문'</li><li>'CJ 백설 프리미엄 23호 형제종합물류'</li><li>'노브랜드 카놀라유 1L 노브랜드 카놀라유2L 주식회사 유일글로벌'</li></ul> | |
|
| 3.0 | <ul><li>'오타비오 아보카도오일 2L 이탈리아 코스트코 포시즌'</li><li>'건강한오늘 아보카도오일 500ml 건강한오늘 아보카도오일 500ml 잇츠설렘'</li><li>'아보퍼시픽 아보카도오일 1L 코스트코 1021670 굿데이'</li></ul> | |
|
| 4.0 | <ul><li>'만능 올리브유 900ml 청정원 가을 식재료 추석 설날 제사 드레싱 샐러드 파스타 모두감동해'</li><li>'CJ제일제당 백설 압착 올리브유 900ml 준스토리'</li><li>'오로바일렌 엑스트라버진 올리브오일 아르베키나 500ml 500ml (주)운우'</li></ul> | |
|
| 7.0 | <ul><li>'사조 해표 포도씨유 250ML 주식회사 킴벌리마스타'</li><li>'오뚜기 프레스코 포도씨유 900ml 주식회사 삼부'</li><li>'대상 청정원 포도씨유 900ml 주식회사 당장만나'</li></ul> | |
|
| 2.0 | <ul><li>'국산 저온압착 들기름 300ml 국내산 아기들기름 저온압착 저온들기름 300ml 농부창고 영농조합법인'</li><li>'미식상회 생들기름 대용량 350ml 에프유니마켓'</li><li>'오뚜기 향긋한 들기름 160ml 1개 (주)하우'</li></ul> | |
|
| 1.0 | <ul><li>'대용량 업소용 식용유 해표 콩 식용유 18L 선택04)오뚜기 콩 식용유 18L 소유앳홈(SO:YOU@Home)'</li><li>'CJ 백설 식용유 1.8L 해표 식용유 1.8L 주식회사 경일종합식품 케이마트몰'</li><li>'CJ 해피스푼 콩식용유 18L 업소용 대용량 저가 식용유 광주 말통 주식회사 케이제이플러스'</li></ul> | |
|
| 0.0 | <ul><li>'캘리포니아골드뉴트리션 슈퍼푸드 오가닉 엑스트라 버진 코코넛 오일 473ml 액상 코코넛기름 에스지샵(SGshop)'</li><li>'참미정 파기름 1.8L 대파 맛기름 참미정 마늘기름 1.8L 주식회사 팜'</li><li>'시아스 불맛기름 화유 500ml 시아스 불맛 고추기름 500ml (주) 식자재민족'</li></ul> | |
|
| 5.0 | <ul><li>'50년전통 대현상회 저온압착 참기름 350ml 돌려따는 BIG 아빠의주스 양배추사과즙 180 네오카트'</li><li>'오뚜기 고소한 참기름 450ml 오뚜기 고소한 참기름 320ml(병) 삼영유통'</li><li>'국산 저온압착 참기름 180ml 선물세트 이삭방앗간 당일착유 국산 저온압착 참기름_250ml 이삭방앗간'</li></ul> | |
|
| 8.0 | <ul><li>'백설 해바라기씨유 500ml 당일 출발 (주) 바쿰'</li><li>'사조해표 해바라기유 500ml 1개 (주)해피상사'</li><li>'사조 해표 해바라기유 500ml (유통기한 24.01까지) ★유통기한임박특가(24년1월까지) 주식회사 킴벌리마스타'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.9927 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_fd12") |
|
# Run inference |
|
preds = model("올리타리아 엑스트라버진 올리브오일 1L 카비스") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 8.5356 | 22 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 50 | |
|
| 1.0 | 50 | |
|
| 2.0 | 50 | |
|
| 3.0 | 50 | |
|
| 4.0 | 50 | |
|
| 5.0 | 50 | |
|
| 6.0 | 50 | |
|
| 7.0 | 50 | |
|
| 8.0 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0141 | 1 | 0.4844 | - | |
|
| 0.7042 | 50 | 0.3408 | - | |
|
| 1.4085 | 100 | 0.0769 | - | |
|
| 2.1127 | 150 | 0.0298 | - | |
|
| 2.8169 | 200 | 0.023 | - | |
|
| 3.5211 | 250 | 0.0251 | - | |
|
| 4.2254 | 300 | 0.0291 | - | |
|
| 4.9296 | 350 | 0.0156 | - | |
|
| 5.6338 | 400 | 0.0137 | - | |
|
| 6.3380 | 450 | 0.0029 | - | |
|
| 7.0423 | 500 | 0.0001 | - | |
|
| 7.7465 | 550 | 0.0001 | - | |
|
| 8.4507 | 600 | 0.0001 | - | |
|
| 9.1549 | 650 | 0.0 | - | |
|
| 9.8592 | 700 | 0.0 | - | |
|
| 10.5634 | 750 | 0.0 | - | |
|
| 11.2676 | 800 | 0.0 | - | |
|
| 11.9718 | 850 | 0.0 | - | |
|
| 12.6761 | 900 | 0.0 | - | |
|
| 13.3803 | 950 | 0.0 | - | |
|
| 14.0845 | 1000 | 0.0 | - | |
|
| 14.7887 | 1050 | 0.0 | - | |
|
| 15.4930 | 1100 | 0.0 | - | |
|
| 16.1972 | 1150 | 0.0 | - | |
|
| 16.9014 | 1200 | 0.0 | - | |
|
| 17.6056 | 1250 | 0.0 | - | |
|
| 18.3099 | 1300 | 0.0 | - | |
|
| 19.0141 | 1350 | 0.0 | - | |
|
| 19.7183 | 1400 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |