|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 동원 덴마크 구워먹는 치즈 후라이드 갈릭 125g x 3개 007스테이지스 |
|
- text: 앵커크림치즈 1박스 (1kg x 12개) 앵커크림치즈 1박스 (1kg x 12개) (주)비오비 |
|
- text: 홉라 무가당 휘핑크림 1L 2개세트 마켓이 |
|
- text: 매일 상하치즈 리코타치즈 200g 2개 냉장배송 대명유통 |
|
- text: 홉라 생크림 무가당 1L 휘핑크림 베이킹 쿠킹크림 1000ml 홉라 생크림 무가당 1L + 아이스박스 (주)비오비 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.9220726783310902 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 6 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 5.0 | <ul><li>'[아이스박스무료] 선인 DB 휘핑크림 1L 무가당 혼합 생크림 재이F&B'</li><li>'이탈리아 홉라 식물성 생크림 500ml 6개 무가당 홉라 홈라 크림 알이즈웰'</li><li>'카파 포모나 휘핑 스프레이 500g 와플 크림 딸기향/휘핑 스프레이 500g 디씨즈(This is)'</li></ul> | |
|
| 1.0 | <ul><li>'오뚜기 버터후레시 48개(아이스박스)/일회용버터 오뚜기 딸기잼 디스펜팩 40개+메이플시럽 40 박길용'</li><li>'버터린 롯데 450g 마늘향오일 갈릭버터오일 (주)인벨'</li><li>'[본사직송] 라꽁비에뜨 가염 무염 꽃소금 버터 450g (15g x 30개) 11/15(수)배송예정_라꽁비에뜨-가염 450g (30개입) 인에이블 코리아(주)'</li></ul> | |
|
| 3.0 | <ul><li>'인도네시아 인도 밀크 스위트드컨덴센 팩 545g 연유 동원무역(이마트24 감천네거리점)'</li><li>'매일연유 5kg 대용량 x 2개 연유 카페스토리(CAFE STORY)'</li><li>'누티 크리머 스위텐드 연유 시럽 385g x 8개 클루'</li></ul> | |
|
| 0.0 | <ul><li>'오뚜기 파운드 마아가린(벌크) 9kg 피치피치몰'</li><li>'오뚜기 쿠키 옥수수마가린 200Gx2 1세트 제과 제빵 토스트 방글방글마켓'</li><li>'Whirl Admiration Pro Fry 액체 쇼트닝 튀김용 3.6kg 8파운드 포커스라이프'</li></ul> | |
|
| 2.0 | <ul><li>'밀락골드 1L 제품수량선택 에스제이푸드(SJ FOOD)'</li><li>'[구매전 긴급공지 필독]1217. 뉴골드라벨 - 한박스(1030g x 12개) 베이킹도전'</li><li>'밀락골드 1L 아이스박스필수구매 에스제이푸드(SJ FOOD)'</li></ul> | |
|
| 4.0 | <ul><li>'상하 샐러드용 슈레드치즈 210g X 1개 종이박스포장 오하'</li><li>'끼리 크림치즈 스프레드 플레인 x 4개 베이글 발라 먹는 치즈 토스트 끼리 크림치즈 스프레드 플레인 4개 더팜'</li><li>'데르뜨 롤케이크 선물세트 소잘우유 초코크림 380g 1개 우유크림 360g 냉동 오씨홀딩스'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.9221 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_fd13") |
|
# Run inference |
|
preds = model("홉라 무가당 휘핑크림 1L 2개세트 마켓이") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 9.5067 | 18 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 50 | |
|
| 1.0 | 50 | |
|
| 2.0 | 50 | |
|
| 3.0 | 50 | |
|
| 4.0 | 50 | |
|
| 5.0 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0213 | 1 | 0.4249 | - | |
|
| 1.0638 | 50 | 0.2783 | - | |
|
| 2.1277 | 100 | 0.0747 | - | |
|
| 3.1915 | 150 | 0.0734 | - | |
|
| 4.2553 | 200 | 0.0368 | - | |
|
| 5.3191 | 250 | 0.0373 | - | |
|
| 6.3830 | 300 | 0.0003 | - | |
|
| 7.4468 | 350 | 0.0001 | - | |
|
| 8.5106 | 400 | 0.0001 | - | |
|
| 9.5745 | 450 | 0.0001 | - | |
|
| 10.6383 | 500 | 0.0 | - | |
|
| 11.7021 | 550 | 0.0 | - | |
|
| 12.7660 | 600 | 0.0 | - | |
|
| 13.8298 | 650 | 0.0 | - | |
|
| 14.8936 | 700 | 0.0 | - | |
|
| 15.9574 | 750 | 0.0 | - | |
|
| 17.0213 | 800 | 0.0 | - | |
|
| 18.0851 | 850 | 0.0 | - | |
|
| 19.1489 | 900 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |