metadata
base_model: rinna/llama-3-youko-8b-instruct
datasets:
- CohereForAI/aya_dataset
- kunishou/databricks-dolly-15k-ja
- kunishou/HelpSteer-35k-ja
- kunishou/HelpSteer2-20k-ja
- kunishou/hh-rlhf-49k-ja
- kunishou/oasst1-chat-44k-ja
- kunishou/oasst2-chat-68k-ja
- meta-math/MetaMathQA
- OpenAssistant/oasst1
- OpenAssistant/oasst2
- sahil2801/CodeAlpaca-20k
language:
- ja
- en
license: llama3
tags:
- llama
- llama-3
- mlx
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
inference: false
base_model_relation: merge
mlx-community/rinna-llama-3-youko-8b-instruct-8bit
The Model mlx-community/rinna-llama-3-youko-8b-instruct-8bit was converted to MLX format from rinna/llama-3-youko-8b-instruct using mlx-lm version 0.19.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/rinna-llama-3-youko-8b-instruct-8bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)