mrkprc1's picture
Upload processor
3a36915 verified
|
raw
history blame
4.51 kB
metadata
license: other
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
base_model: nvidia/mit-b1
model-index:
  - name: segformer-b1-finetuned-sudoku
    results: []

segformer-b1-finetuned-sudoku

This model is a fine-tuned version of nvidia/mit-b1 on the mrkprc1/SudokuBoundaries2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7703
  • Mean Iou: 0.0967
  • Mean Accuracy: 0.1934
  • Overall Accuracy: 0.1934
  • Accuracy Unlabelled: nan
  • Accuracy Sudoku-boundary: 0.1934
  • Iou Unlabelled: 0.0
  • Iou Sudoku-boundary: 0.1934

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabelled Accuracy Sudoku-boundary Iou Unlabelled Iou Sudoku-boundary
0.6531 3.33 20 0.7016 0.1433 0.2867 0.2867 nan 0.2867 0.0 0.2867
0.7654 6.67 40 0.7142 0.3064 0.6129 0.6129 nan 0.6129 0.0 0.6129
0.4761 10.0 60 1.0391 0.0002 0.0005 0.0005 nan 0.0005 0.0 0.0005
0.7746 13.33 80 1.7648 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.5488 16.67 100 1.2288 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.6242 20.0 120 1.5012 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.5423 23.33 140 0.9650 0.0029 0.0059 0.0059 nan 0.0059 0.0 0.0059
0.521 26.67 160 0.8594 0.0197 0.0393 0.0393 nan 0.0393 0.0 0.0393
0.5655 30.0 180 0.7950 0.0527 0.1055 0.1055 nan 0.1055 0.0 0.1055
0.4229 33.33 200 0.7910 0.0982 0.1964 0.1964 nan 0.1964 0.0 0.1964
0.288 36.67 220 0.7591 0.1358 0.2715 0.2715 nan 0.2715 0.0 0.2715
0.2002 40.0 240 0.7395 0.2414 0.4828 0.4828 nan 0.4828 0.0 0.4828
0.6014 43.33 260 0.7405 0.2644 0.5289 0.5289 nan 0.5289 0.0 0.5289
0.4336 46.67 280 0.7423 0.1751 0.3502 0.3502 nan 0.3502 0.0 0.3502
0.565 50.0 300 0.7703 0.0967 0.1934 0.1934 nan 0.1934 0.0 0.1934

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.15.1