metadata
base_model: BAAI/bge-large-en-v1.5
datasets:
- nazhan/qa-lookup-dataset-iter-1
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Get me the first names of employees working in the 'Legal' department.
- text: >-
Provide the value of the export tariff paid on shipments to 'Country Z' in
2024.
- text: >-
Show me the value of the freight charges for the shipment made on October
10, 2023.
- text: >-
Show me the value of the refund issued to 'Customer K' for a defective
product.
- text: Provide the value of the environmental compliance cost for 2023.
inference: true
model-index:
- name: SetFit with BAAI/bge-large-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: nazhan/qa-lookup-dataset-iter-1
type: nazhan/qa-lookup-dataset-iter-1
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
SetFit with BAAI/bge-large-en-v1.5
This is a SetFit model trained on the nazhan/qa-lookup-dataset-iter-1 dataset that can be used for Text Classification. This SetFit model uses BAAI/bge-large-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-large-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
- Training Dataset: nazhan/qa-lookup-dataset-iter-1
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Lookup |
|
qa |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-qa-lookup-iter-1-2-epoch")
# Run inference
preds = model("Provide the value of the environmental compliance cost for 2023.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 8 | 12.8309 | 19 |
Label | Training Sample Count |
---|---|
Lookup | 65 |
qa | 71 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0034 | 1 | 0.1823 | - |
0.1701 | 50 | 0.0031 | - |
0.3401 | 100 | 0.0012 | - |
0.5102 | 150 | 0.0011 | - |
0.6803 | 200 | 0.0009 | - |
0.8503 | 250 | 0.0008 | - |
1.0 | 294 | - | 0.0004 |
1.0204 | 300 | 0.0008 | - |
1.1905 | 350 | 0.0008 | - |
1.3605 | 400 | 0.0007 | - |
1.5306 | 450 | 0.0006 | - |
1.7007 | 500 | 0.0006 | - |
1.8707 | 550 | 0.0006 | - |
2.0 | 588 | - | 0.0003 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}