ndeclarke's picture
Upload tokenizer
29eebe1 verified
|
raw
history blame
3.02 kB
---
base_model: facebook/mms-1b-all
datasets:
- common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
- wer
- bleu
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-mms-1b-CV17.0-training_set_variations
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ta
split: validation
args: ta
metrics:
- type: wer
value: 0.41655589677774213
name: Wer
- type: bleu
value: 0.3602695476100989
name: Bleu
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-mms-1b-CV17.0-training_set_variations
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3166
- Wer: 0.4166
- Cer: 0.0689
- Bleu: 0.3603
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
| 11.8671 | 3.125 | 50 | 3.8104 | 1.0011 | 0.9249 | 0.0 |
| 1.5965 | 6.25 | 100 | 0.2796 | 0.4122 | 0.0680 | 0.3517 |
| 0.2054 | 9.375 | 150 | 0.2320 | 0.3751 | 0.0620 | 0.4040 |
| 0.1702 | 12.5 | 200 | 0.2367 | 0.3794 | 0.0633 | 0.3939 |
| 0.1495 | 15.625 | 250 | 0.2527 | 0.4168 | 0.0680 | 0.3457 |
| 0.1457 | 18.75 | 300 | 0.2536 | 0.3973 | 0.0662 | 0.3723 |
| 0.1264 | 21.875 | 350 | 0.2765 | 0.4175 | 0.0693 | 0.3546 |
| 0.1092 | 25.0 | 400 | 0.2711 | 0.4032 | 0.0673 | 0.3701 |
| 0.0952 | 28.125 | 450 | 0.2828 | 0.4139 | 0.0691 | 0.3605 |
| 0.0919 | 31.25 | 500 | 0.2972 | 0.4283 | 0.0721 | 0.3355 |
| 0.0909 | 34.375 | 550 | 0.2971 | 0.4155 | 0.0686 | 0.3567 |
| 0.0744 | 37.5 | 600 | 0.3086 | 0.4241 | 0.0705 | 0.3461 |
| 0.069 | 40.625 | 650 | 0.3166 | 0.4166 | 0.0689 | 0.3603 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1