nickmuchi's picture
update model card README.md
e61b476
|
raw
history blame
3.33 kB
metadata
license: apache-2.0
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-xray-pneumonia
    results: []

vit-base-xray-pneumonia

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the chest-xray-pneumonia dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3387
  • Accuracy: 0.9006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1233 0.31 100 1.1662 0.6651
0.0868 0.61 200 0.3387 0.9006
0.1387 0.92 300 0.5297 0.8237
0.1264 1.23 400 0.4566 0.8590
0.0829 1.53 500 0.6832 0.8285
0.0734 1.84 600 0.4886 0.8157
0.0132 2.15 700 1.3639 0.7292
0.0877 2.45 800 0.5258 0.8846
0.0516 2.76 900 0.8772 0.8013
0.0637 3.07 1000 0.4947 0.8558
0.0022 3.37 1100 1.0062 0.8045
0.0555 3.68 1200 0.7822 0.8285
0.0405 3.99 1300 1.9288 0.6779
0.0012 4.29 1400 1.2153 0.7981
0.0034 4.6 1500 1.8931 0.7308
0.0339 4.91 1600 0.9071 0.8590
0.0013 5.21 1700 1.6266 0.7580
0.0373 5.52 1800 1.5252 0.7676
0.001 5.83 1900 1.2748 0.7869
0.0005 6.13 2000 1.2103 0.8061
0.0004 6.44 2100 1.3133 0.7981
0.0004 6.75 2200 1.2200 0.8045
0.0004 7.06 2300 1.2834 0.7933
0.0004 7.36 2400 1.3080 0.7949
0.0003 7.67 2500 1.3814 0.7917
0.0004 7.98 2600 1.2853 0.7965
0.0003 8.28 2700 1.3644 0.7933
0.0003 8.59 2800 1.3137 0.8013
0.0003 8.9 2900 1.3507 0.7997
0.0003 9.2 3000 1.3751 0.7997
0.0003 9.51 3100 1.3884 0.7981
0.0003 9.82 3200 1.3831 0.7997

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.4
  • Tokenizers 0.11.6