|
--- |
|
license: apache-2.0 |
|
tags: |
|
- image-classification |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-base-xray-pneumonia |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-xray-pneumonia |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the chest-xray-pneumonia dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3387 |
|
- Accuracy: 0.9006 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.1233 | 0.31 | 100 | 1.1662 | 0.6651 | |
|
| 0.0868 | 0.61 | 200 | 0.3387 | 0.9006 | |
|
| 0.1387 | 0.92 | 300 | 0.5297 | 0.8237 | |
|
| 0.1264 | 1.23 | 400 | 0.4566 | 0.8590 | |
|
| 0.0829 | 1.53 | 500 | 0.6832 | 0.8285 | |
|
| 0.0734 | 1.84 | 600 | 0.4886 | 0.8157 | |
|
| 0.0132 | 2.15 | 700 | 1.3639 | 0.7292 | |
|
| 0.0877 | 2.45 | 800 | 0.5258 | 0.8846 | |
|
| 0.0516 | 2.76 | 900 | 0.8772 | 0.8013 | |
|
| 0.0637 | 3.07 | 1000 | 0.4947 | 0.8558 | |
|
| 0.0022 | 3.37 | 1100 | 1.0062 | 0.8045 | |
|
| 0.0555 | 3.68 | 1200 | 0.7822 | 0.8285 | |
|
| 0.0405 | 3.99 | 1300 | 1.9288 | 0.6779 | |
|
| 0.0012 | 4.29 | 1400 | 1.2153 | 0.7981 | |
|
| 0.0034 | 4.6 | 1500 | 1.8931 | 0.7308 | |
|
| 0.0339 | 4.91 | 1600 | 0.9071 | 0.8590 | |
|
| 0.0013 | 5.21 | 1700 | 1.6266 | 0.7580 | |
|
| 0.0373 | 5.52 | 1800 | 1.5252 | 0.7676 | |
|
| 0.001 | 5.83 | 1900 | 1.2748 | 0.7869 | |
|
| 0.0005 | 6.13 | 2000 | 1.2103 | 0.8061 | |
|
| 0.0004 | 6.44 | 2100 | 1.3133 | 0.7981 | |
|
| 0.0004 | 6.75 | 2200 | 1.2200 | 0.8045 | |
|
| 0.0004 | 7.06 | 2300 | 1.2834 | 0.7933 | |
|
| 0.0004 | 7.36 | 2400 | 1.3080 | 0.7949 | |
|
| 0.0003 | 7.67 | 2500 | 1.3814 | 0.7917 | |
|
| 0.0004 | 7.98 | 2600 | 1.2853 | 0.7965 | |
|
| 0.0003 | 8.28 | 2700 | 1.3644 | 0.7933 | |
|
| 0.0003 | 8.59 | 2800 | 1.3137 | 0.8013 | |
|
| 0.0003 | 8.9 | 2900 | 1.3507 | 0.7997 | |
|
| 0.0003 | 9.2 | 3000 | 1.3751 | 0.7997 | |
|
| 0.0003 | 9.51 | 3100 | 1.3884 | 0.7981 | |
|
| 0.0003 | 9.82 | 3200 | 1.3831 | 0.7997 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.4 |
|
- Tokenizers 0.11.6 |
|
|