librarian-bot's picture
Librarian Bot: Add base_model information to model
c1e3102
|
raw
history blame
2.97 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - cord
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: microsoft/layoutlmv3-base
model-index:
  - name: layoutlmv3-finetuned-cord
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: cord
          type: cord
          args: cord
        metrics:
          - type: precision
            value: 0.9619686800894854
            name: Precision
          - type: recall
            value: 0.9655688622754491
            name: Recall
          - type: f1
            value: 0.9637654090399701
            name: F1
          - type: accuracy
            value: 0.9681663837011885
            name: Accuracy

layoutlmv3-finetuned-cord

This model is a fine-tuned version of microsoft/layoutlmv3-base on the CORD dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1845
  • Precision: 0.9620
  • Recall: 0.9656
  • F1: 0.9638
  • Accuracy: 0.9682

The script for training can be found here: https://github.com/huggingface/transformers/tree/main/examples/research_projects/layoutlmv3

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 100 0.5257 0.8223 0.8555 0.8386 0.8710
No log 4.0 200 0.3200 0.9118 0.9281 0.9199 0.9317
No log 6.0 300 0.2449 0.9298 0.9424 0.9361 0.9465
No log 8.0 400 0.1923 0.9472 0.9536 0.9504 0.9597
0.4328 10.0 500 0.1857 0.9591 0.9656 0.9623 0.9682
0.4328 12.0 600 0.2073 0.9597 0.9618 0.9607 0.9656
0.4328 14.0 700 0.1804 0.9634 0.9663 0.9649 0.9703
0.4328 16.0 800 0.1882 0.9634 0.9648 0.9641 0.9665
0.4328 18.0 900 0.1800 0.9619 0.9648 0.9634 0.9677
0.0318 20.0 1000 0.1845 0.9620 0.9656 0.9638 0.9682

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.0.0
  • Tokenizers 0.11.6