|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
base_model: microsoft/layoutlmv3-base |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: cord |
|
type: cord |
|
args: cord |
|
metrics: |
|
- type: precision |
|
value: 0.9619686800894854 |
|
name: Precision |
|
- type: recall |
|
value: 0.9655688622754491 |
|
name: Recall |
|
- type: f1 |
|
value: 0.9637654090399701 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.9681663837011885 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the CORD dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1845 |
|
- Precision: 0.9620 |
|
- Recall: 0.9656 |
|
- F1: 0.9638 |
|
- Accuracy: 0.9682 |
|
|
|
The script for training can be found here: https://github.com/huggingface/transformers/tree/main/examples/research_projects/layoutlmv3 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 2.0 | 100 | 0.5257 | 0.8223 | 0.8555 | 0.8386 | 0.8710 | |
|
| No log | 4.0 | 200 | 0.3200 | 0.9118 | 0.9281 | 0.9199 | 0.9317 | |
|
| No log | 6.0 | 300 | 0.2449 | 0.9298 | 0.9424 | 0.9361 | 0.9465 | |
|
| No log | 8.0 | 400 | 0.1923 | 0.9472 | 0.9536 | 0.9504 | 0.9597 | |
|
| 0.4328 | 10.0 | 500 | 0.1857 | 0.9591 | 0.9656 | 0.9623 | 0.9682 | |
|
| 0.4328 | 12.0 | 600 | 0.2073 | 0.9597 | 0.9618 | 0.9607 | 0.9656 | |
|
| 0.4328 | 14.0 | 700 | 0.1804 | 0.9634 | 0.9663 | 0.9649 | 0.9703 | |
|
| 0.4328 | 16.0 | 800 | 0.1882 | 0.9634 | 0.9648 | 0.9641 | 0.9665 | |
|
| 0.4328 | 18.0 | 900 | 0.1800 | 0.9619 | 0.9648 | 0.9634 | 0.9677 | |
|
| 0.0318 | 20.0 | 1000 | 0.1845 | 0.9620 | 0.9656 | 0.9638 | 0.9682 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.0.dev0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.11.6 |
|
|