|
--- |
|
base_model: |
|
- openbmb/MiniCPM-V-2_6 |
|
--- |
|
|
|
## Creation |
|
|
|
```python |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import oneshot, wrap_hf_model_class |
|
|
|
MODEL_ID = "openbmb/MiniCPM-V-2_6" |
|
|
|
# Load model. |
|
model_class = wrap_hf_model_class(AutoModelForCausalLM) |
|
model = model_class.from_pretrained(MODEL_ID, torch_dtype="auto", trust_remote_code=True).to("cuda") |
|
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
|
|
# Configure the quantization algorithm and scheme. |
|
# In this case, we: |
|
# * quantize the weights to fp8 with per channel via ptq |
|
# * quantize the activations to fp8 with dynamic per token |
|
recipe = QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
ignore=["re:.*lm_head", "re:resampler.*", "re:vpm.*"], |
|
) |
|
|
|
# Apply quantization and save to disk in compressed-tensors format. |
|
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-dynamic" |
|
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR, trust_remote_code_model=True) |
|
processor.save_pretrained(SAVE_DIR) |
|
``` |