noahkim's picture
Update README.md
6ca09b7
|
raw
history blame
2.07 kB
metadata
language: ko
tags:
  - summarization
  - T5
  - news
inference: false

KoT5_news_summarization

Model description

<<20221021 Commit>>

๊ฐœ์ธ ์Šคํ„ฐ๋””์šฉ์œผ๋กœ ๋‰ด์Šค ์š”์•ฝ ๋ชจ๋ธ ํŠนํ™”๋œ ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด lcw99๋‹˜์˜ t5-base-korean-text-summary ๋ชจ๋ธ์— ์ถ”๊ฐ€์ ์œผ๋กœ daekeun-ml๋‹˜์ด ์ œ๊ณตํ•ด์ฃผ์‹  naver-news-summarization-ko ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํŒŒ์ธํŠœ๋‹ ํ–ˆ์Šต๋‹ˆ๋‹ค. ํ˜„์žฌ ์ œ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋‰ด์Šค ๋ฐ์ดํ„ฐ๋กœ ์ถ”๊ฐ€ ํ•™์Šต ์ง„ํ–‰ ์˜ˆ์ •์ž…๋‹ˆ๋‹ค. ์ง€์†์ ์œผ๋กœ ๋ฐœ์ „์‹œ์ผœ ์ข‹์€ ์„ฑ๋Šฅ์˜ ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.


# Python Code
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("noahkim/KoT5_news_summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("noahkim/KoT5_news_summarization")

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.4513 1.0 2775 0.4067
0.42 2.0 5550 0.3933
0.395 3.0 8325 0.3864
0.3771 4.0 11100 0.3872

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1