noahkim's picture
Update README.md
6ca09b7
|
raw
history blame
2.07 kB
---
language: ko
tags:
- summarization
- T5
- news
inference: false
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# KoT5_news_summarization
- This model is a [lcw99/t5-base-korean-text-summary](https://huggingface.co/lcw99/t5-base-korean-text-summary) finetuned on the [daekeun-ml/naver-news-summarization-ko](https://huggingface.co/datasets/daekeun-ml/naver-news-summarization-ko)
- Loss: 0.3872
## Model description
<<20221021 Commit>>
개인 μŠ€ν„°λ””μš©μœΌλ‘œ λ‰΄μŠ€ μš”μ•½ λͺ¨λΈ νŠΉν™”λœ λͺ¨λΈμ„ λ§Œλ“€κΈ° μœ„ν•΄ lcw99λ‹˜μ˜ t5-base-korean-text-summary λͺ¨λΈμ— μΆ”κ°€μ μœΌλ‘œ daekeun-mlλ‹˜μ΄ μ œκ³΅ν•΄μ£Όμ‹  naver-news-summarization-ko λ°μ΄ν„°μ…‹μœΌλ‘œ νŒŒμΈνŠœλ‹ ν–ˆμŠ΅λ‹ˆλ‹€.
ν˜„μž¬ μ œκ°€ 가지고 μžˆλŠ” λ‰΄μŠ€ λ°μ΄ν„°λ‘œ μΆ”κ°€ ν•™μŠ΅ 진행 μ˜ˆμ •μž…λ‹ˆλ‹€.
μ§€μ†μ μœΌλ‘œ λ°œμ „μ‹œμΌœ 쒋은 μ„±λŠ₯의 λͺ¨λΈμ„ κ΅¬ν˜„ν•˜κ² μŠ΅λ‹ˆλ‹€.
κ°μ‚¬ν•©λ‹ˆλ‹€.
<pre><code>
# Python Code
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("noahkim/KoT5_news_summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("noahkim/KoT5_news_summarization")
</pre></code>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.4513 | 1.0 | 2775 | 0.4067 |
| 0.42 | 2.0 | 5550 | 0.3933 |
| 0.395 | 3.0 | 8325 | 0.3864 |
| 0.3771 | 4.0 | 11100 | 0.3872 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1