|
|
|
--- |
|
language: ko |
|
tags: |
|
- summarization |
|
- T5 |
|
- news |
|
inference: false |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# KoT5_news_summarization |
|
|
|
- This model is a [lcw99/t5-base-korean-text-summary](https://huggingface.co/lcw99/t5-base-korean-text-summary) finetuned on the [daekeun-ml/naver-news-summarization-ko](https://huggingface.co/datasets/daekeun-ml/naver-news-summarization-ko) |
|
|
|
- Loss: 0.3872 |
|
|
|
## Model description |
|
|
|
<<20221021 Commit>> |
|
|
|
κ°μΈ μ€ν°λμ©μΌλ‘ λ΄μ€ μμ½ λͺ¨λΈ νΉνλ λͺ¨λΈμ λ§λ€κΈ° μν΄ lcw99λμ t5-base-korean-text-summary λͺ¨λΈμ μΆκ°μ μΌλ‘ daekeun-mlλμ΄ μ 곡ν΄μ£Όμ naver-news-summarization-ko λ°μ΄ν°μ
μΌλ‘ νμΈνλ νμ΅λλ€. |
|
νμ¬ μ κ° κ°μ§κ³ μλ λ΄μ€ λ°μ΄ν°λ‘ μΆκ° νμ΅ μ§ν μμ μ
λλ€. |
|
μ§μμ μΌλ‘ λ°μ μμΌ μ’μ μ±λ₯μ λͺ¨λΈμ ꡬννκ² μ΅λλ€. |
|
κ°μ¬ν©λλ€. |
|
|
|
<pre><code> |
|
# Python Code |
|
from transformers import AutoTokenizer |
|
from transformers import AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("noahkim/KoT5_news_summarization") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("noahkim/KoT5_news_summarization") |
|
</pre></code> |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.4513 | 1.0 | 2775 | 0.4067 | |
|
| 0.42 | 2.0 | 5550 | 0.3933 | |
|
| 0.395 | 3.0 | 8325 | 0.3864 | |
|
| 0.3771 | 4.0 | 11100 | 0.3872 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|