nrshoudi's picture
End of training
cc245c2 verified
|
raw
history blame
2.92 kB
metadata
license: apache-2.0
base_model: facebook/hubert-large-ll60k
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: speech_ocean_hubert_mdd
    results: []

speech_ocean_hubert_mdd

This model is a fine-tuned version of facebook/hubert-large-ll60k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2060
  • Wer: 0.0531
  • Cer: 0.0507

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
42.5933 0.9873 39 36.3096 0.9995 0.9985
15.8463 2.0 79 7.9376 1.0 1.0
6.5393 2.9873 118 4.5528 1.0 1.0
3.9947 4.0 158 3.8592 1.0 1.0
3.8025 4.9873 197 3.8002 1.0 1.0
3.7706 6.0 237 3.7435 1.0 1.0
3.7676 6.9873 276 3.7276 1.0 1.0
3.7353 8.0 316 3.7150 1.0 1.0
3.7126 8.9873 355 3.6717 1.0 1.0
3.5628 10.0 395 3.3098 1.0 1.0
2.837 10.9873 434 2.3304 0.8277 0.8915
2.1018 12.0 474 1.5575 0.5441 0.6213
1.6164 12.9873 513 1.0106 0.2678 0.2596
1.1823 14.0 553 0.6938 0.1788 0.1509
0.9451 14.9873 592 0.4673 0.1154 0.0925
0.7055 16.0 632 0.3455 0.0893 0.0767
0.5434 16.9873 671 0.2803 0.0718 0.0637
0.4867 18.0 711 0.2362 0.0608 0.0566
0.4172 18.9873 750 0.2125 0.0551 0.0522
0.4406 19.7468 780 0.2060 0.0531 0.0507

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1