metadata
library_name: transformers
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mi-super-modelo
results: []
mi-super-modelo
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3257
- Accuracy: 0.865
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7019 | 0.04 | 5 | 0.6916 | 0.51 |
0.7006 | 0.08 | 10 | 0.6860 | 0.495 |
0.7015 | 0.12 | 15 | 0.6802 | 0.58 |
0.6842 | 0.16 | 20 | 0.6756 | 0.525 |
0.658 | 0.2 | 25 | 0.6492 | 0.595 |
0.6329 | 0.24 | 30 | 0.5335 | 0.855 |
0.4345 | 0.28 | 35 | 0.4493 | 0.825 |
0.3086 | 0.32 | 40 | 0.3973 | 0.84 |
0.4788 | 0.36 | 45 | 0.3747 | 0.855 |
0.6449 | 0.4 | 50 | 0.4614 | 0.8 |
0.2355 | 0.44 | 55 | 0.3603 | 0.855 |
0.4233 | 0.48 | 60 | 0.4841 | 0.8 |
0.5185 | 0.52 | 65 | 0.5940 | 0.755 |
0.3089 | 0.56 | 70 | 0.3760 | 0.87 |
0.3867 | 0.6 | 75 | 0.3636 | 0.86 |
0.3289 | 0.64 | 80 | 0.3339 | 0.885 |
0.5774 | 0.68 | 85 | 0.3070 | 0.875 |
0.3258 | 0.72 | 90 | 0.4532 | 0.8 |
0.5363 | 0.76 | 95 | 0.3687 | 0.86 |
0.4099 | 0.8 | 100 | 0.2847 | 0.88 |
0.2841 | 0.84 | 105 | 0.3147 | 0.885 |
0.3949 | 0.88 | 110 | 0.3424 | 0.855 |
0.3056 | 0.92 | 115 | 0.3620 | 0.835 |
0.4219 | 0.96 | 120 | 0.3437 | 0.855 |
0.3343 | 1.0 | 125 | 0.3257 | 0.865 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cpu
- Datasets 2.21.0
- Tokenizers 0.19.1