pabRomero's picture
Training complete
5829a9f verified
|
raw
history blame
2.05 kB
metadata
library_name: transformers
base_model: allenai/biomed_roberta_base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BioMedRoBERTa-full-finetuned-ner-pablo
    results: []

BioMedRoBERTa-full-finetuned-ner-pablo

This model is a fine-tuned version of allenai/biomed_roberta_base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1094
  • Precision: 0.8151
  • Recall: 0.7999
  • F1: 0.8074
  • Accuracy: 0.9737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3008 1.0 613 0.0937 0.8042 0.7705 0.7870 0.9727
0.0799 2.0 1226 0.0873 0.8103 0.7936 0.8019 0.9744
0.0649 3.0 1839 0.0888 0.8179 0.7930 0.8053 0.9748
0.053 4.0 2452 0.0966 0.8082 0.7978 0.8029 0.9732
0.0321 5.0 3065 0.1094 0.8151 0.7999 0.8074 0.9737

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1