philschmid's picture
philschmid HF staff
End of training
edb0d6e
|
raw
history blame
2.07 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: MiniLMv2-L6-H384-sst2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9197247706422018

MiniLMv2-L6-H384-sst2

This model is a fine-tuned version of nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2532
  • Accuracy: 0.9197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: sagemaker_data_parallel
  • num_devices: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5787 1.0 264 0.3496 0.8624
0.3413 2.0 528 0.2599 0.8991
0.2716 3.0 792 0.2651 0.9048
0.2343 4.0 1056 0.2532 0.9197
0.2165 5.0 1320 0.2636 0.9151

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2+cu113
  • Datasets 1.18.4
  • Tokenizers 0.11.6