Phi-3.5-mini-instruct-qlora
This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8242
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6254 | 0.3333 | 10 | 1.2928 |
1.0852 | 0.6667 | 20 | 0.9771 |
0.8786 | 1.0 | 30 | 0.8939 |
0.7889 | 1.3333 | 40 | 0.8575 |
0.7281 | 1.6667 | 50 | 0.8336 |
0.6876 | 2.0 | 60 | 0.8175 |
0.6217 | 2.3333 | 70 | 0.8238 |
0.6066 | 2.6667 | 80 | 0.8274 |
0.614 | 3.0 | 90 | 0.8193 |
0.5568 | 3.3333 | 100 | 0.8235 |
0.5435 | 3.6667 | 110 | 0.8242 |
0.5699 | 4.0 | 120 | 0.8242 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.4.0
- Datasets 3.0.2
- Tokenizers 0.20.0
- Downloads last month
- 14
Model tree for psvishnu/Phi-3.5-mini-instruct-qlora
Base model
microsoft/Phi-3.5-mini-instruct