Phi-3.5-mini-instruct-qlora

This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8242

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 0
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.6254 0.3333 10 1.2928
1.0852 0.6667 20 0.9771
0.8786 1.0 30 0.8939
0.7889 1.3333 40 0.8575
0.7281 1.6667 50 0.8336
0.6876 2.0 60 0.8175
0.6217 2.3333 70 0.8238
0.6066 2.6667 80 0.8274
0.614 3.0 90 0.8193
0.5568 3.3333 100 0.8235
0.5435 3.6667 110 0.8242
0.5699 4.0 120 0.8242

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.4.0
  • Datasets 3.0.2
  • Tokenizers 0.20.0
Downloads last month
14
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for psvishnu/Phi-3.5-mini-instruct-qlora

Adapter
(125)
this model