metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en-US
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-AU
split: train
args: en-AU
metrics:
- name: Wer
type: wer
value: 0.19386369807222373
whisper-tiny-en-US
This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5874
- Wer Ortho: 0.1978
- Wer: 0.1939
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 5
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
No log | 0.36 | 10 | 0.5445 | 0.1970 | 0.1930 |
No log | 0.71 | 20 | 0.5571 | 0.1973 | 0.1939 |
0.0009 | 1.07 | 30 | 0.5571 | 0.1981 | 0.1936 |
0.0009 | 1.43 | 40 | 0.5535 | 0.1958 | 0.1920 |
0.0024 | 1.79 | 50 | 0.5568 | 0.1967 | 0.1930 |
0.0024 | 2.14 | 60 | 0.5679 | 0.2024 | 0.1996 |
0.0024 | 2.5 | 70 | 0.5574 | 0.1970 | 0.1944 |
0.0019 | 2.86 | 80 | 0.5454 | 0.1956 | 0.1936 |
0.0019 | 3.21 | 90 | 0.5541 | 0.2044 | 0.1982 |
0.0043 | 3.57 | 100 | 0.5330 | 0.1998 | 0.1936 |
0.0043 | 3.93 | 110 | 0.5524 | 0.1981 | 0.1958 |
0.0043 | 4.29 | 120 | 0.5482 | 0.1958 | 0.1933 |
0.0043 | 4.64 | 130 | 0.5554 | 0.1984 | 0.1952 |
0.0043 | 5.0 | 140 | 0.5634 | 0.1998 | 0.1949 |
0.001 | 5.36 | 150 | 0.5526 | 0.1990 | 0.1930 |
0.001 | 5.71 | 160 | 0.5511 | 0.1973 | 0.1920 |
0.001 | 6.07 | 170 | 0.5548 | 0.1953 | 0.1917 |
0.0006 | 6.43 | 180 | 0.5589 | 0.2047 | 0.1998 |
0.0006 | 6.79 | 190 | 0.5657 | 0.2027 | 0.1982 |
0.0004 | 7.14 | 200 | 0.5686 | 0.1961 | 0.1933 |
0.0004 | 7.5 | 210 | 0.5714 | 0.1944 | 0.1911 |
0.0004 | 7.86 | 220 | 0.5710 | 0.1976 | 0.1941 |
0.0002 | 8.21 | 230 | 0.5656 | 0.1973 | 0.1925 |
0.0002 | 8.57 | 240 | 0.5661 | 0.1981 | 0.1928 |
0.0001 | 8.93 | 250 | 0.5688 | 0.1984 | 0.1930 |
0.0001 | 9.29 | 260 | 0.5720 | 0.1967 | 0.1920 |
0.0001 | 9.64 | 270 | 0.5745 | 0.1970 | 0.1930 |
0.0001 | 10.0 | 280 | 0.5758 | 0.1964 | 0.1925 |
0.0001 | 10.36 | 290 | 0.5767 | 0.1970 | 0.1930 |
0.0001 | 10.71 | 300 | 0.5780 | 0.1978 | 0.1941 |
0.0001 | 11.07 | 310 | 0.5793 | 0.1978 | 0.1941 |
0.0001 | 11.43 | 320 | 0.5803 | 0.1976 | 0.1939 |
0.0001 | 11.79 | 330 | 0.5815 | 0.1973 | 0.1933 |
0.0001 | 12.14 | 340 | 0.5824 | 0.1973 | 0.1933 |
0.0001 | 12.5 | 350 | 0.5833 | 0.1973 | 0.1933 |
0.0001 | 12.86 | 360 | 0.5843 | 0.1970 | 0.1933 |
0.0001 | 13.21 | 370 | 0.5850 | 0.1976 | 0.1936 |
0.0001 | 13.57 | 380 | 0.5856 | 0.1978 | 0.1939 |
0.0001 | 13.93 | 390 | 0.5865 | 0.1978 | 0.1939 |
0.0001 | 14.29 | 400 | 0.5874 | 0.1978 | 0.1939 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1