File size: 12,362 Bytes
fd1daf2
 
 
 
 
 
 
 
 
 
 
891d249
fd1daf2
 
 
 
abad4b4
7216c9f
fd1daf2
f78cd94
abad4b4
 
fd1daf2
 
 
 
 
 
 
 
 
 
 
 
 
7216c9f
fd1daf2
7949d59
 
2afd55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1daf2
deb93e2
 
fd1daf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9445033
7949d59
 
 
 
 
2afd55d
 
7949d59
 
9445033
deb93e2
 
fd1daf2
 
deb93e2
fd1daf2
 
 
 
 
 
 
 
 
 
 
 
2afd55d
fd1daf2
 
2afd55d
fd1daf2
 
 
 
2afd55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1daf2
 
 
 
 
 
 
 
 
 
 
 
2d1d910
 
 
f666d88
fd1daf2
 
 
 
 
 
 
 
 
2d1d910
 
 
 
f666d88
fd1daf2
 
 
 
 
 
891d249
fd1daf2
 
deb93e2
fd1daf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7949d59
fd1daf2
7949d59
 
 
 
fd1daf2
 
 
 
 
7949d59
 
fd1daf2
cdcbd1b
fd1daf2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
---
library_name: pytorch
license: gpl-3.0
pipeline_tag: image-segmentation
tags:
- backbone
- real_time
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/unet_segmentation/web-assets/model_demo.png)

# Unet-Segmentation: Optimized for Mobile Deployment
## Real-time segmentation optimized for mobile and edge


UNet is a machine learning model that produces a segmentation mask for an image. The most basic use case will label each pixel in the image as being in the foreground or the background. More advanced usage will assign a class label to each pixel. This version of the model was trained on the data from Kaggle's Carvana Image Masking Challenge (see https://www.kaggle.com/c/carvana-image-masking-challenge) and is used for vehicle segmentation.

This model is an implementation of Unet-Segmentation found [here](https://github.com/milesial/Pytorch-UNet).


This repository provides scripts to run Unet-Segmentation on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/unet_segmentation).


### Model Details

- **Model Type:** Semantic segmentation
- **Model Stats:**
  - Model checkpoint: unet_carvana_scale1.0_epoch2
  - Input resolution: 224x224
  - Number of parameters: 31.0M
  - Model size: 118 MB
  - Number of output classes: 2 (foreground / background)

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 152.941 ms | 6 - 466 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 154.481 ms | 9 - 37 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 153.838 ms | 16 - 19 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 113.773 ms | 6 - 92 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 110.791 ms | 9 - 93 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 112.812 ms | 1 - 406 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 102.108 ms | 4 - 105 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 89.253 ms | 9 - 110 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 103.52 ms | 14 - 134 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 157.694 ms | 3 - 469 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 139.616 ms | 10 - 11 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA7255P ADP | SA7255P | TFLITE | 7406.94 ms | 2 - 100 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | SA7255P ADP | SA7255P | QNN | 7399.668 ms | 1 - 7 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 154.76 ms | 6 - 241 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 145.08 ms | 10 - 11 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA8295P ADP | SA8295P | TFLITE | 273.606 ms | 6 - 106 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | SA8295P ADP | SA8295P | QNN | 266.119 ms | 0 - 6 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 156.964 ms | 3 - 471 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 139.333 ms | 10 - 11 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA8775P ADP | SA8775P | TFLITE | 303.207 ms | 6 - 104 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | SA8775P ADP | SA8775P | QNN | 297.898 ms | 1 - 6 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 297.003 ms | 6 - 98 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 322.428 ms | 5 - 92 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 135.772 ms | 9 - 9 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 147.629 ms | 54 - 54 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |




## Installation

This model can be installed as a Python package via pip.

```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.unet_segmentation.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.unet_segmentation.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.unet_segmentation.export
```
```
Profiling Results
------------------------------------------------------------
Unet-Segmentation
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 152.9                  
Estimated peak memory usage (MB): [6, 466]               
Total # Ops                     : 32                     
Compute Unit(s)                 : NPU (32 ops)           
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/unet_segmentation/qai_hub_models/models/Unet-Segmentation/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.unet_segmentation import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.unet_segmentation.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.unet_segmentation.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Unet-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/unet_segmentation).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Unet-Segmentation can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE)



## References
* [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)
* [Source Model Implementation](https://github.com/milesial/Pytorch-UNet)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).