riandika's picture
End of training
05101c9 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.60625

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1494
  • Accuracy: 0.6062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8347 1.0 10 1.9052 0.3688
1.838 2.0 20 1.7999 0.375
1.7193 3.0 30 1.6869 0.35
1.5873 4.0 40 1.5855 0.4437
1.4919 5.0 50 1.4977 0.475
1.4049 6.0 60 1.4425 0.4875
1.3025 7.0 70 1.4254 0.45
1.238 8.0 80 1.3994 0.475
1.1704 9.0 90 1.3109 0.5312
1.1009 10.0 100 1.3309 0.525
1.0309 11.0 110 1.2941 0.5687
0.9705 12.0 120 1.2750 0.5188
0.9315 13.0 130 1.2402 0.55
0.8894 14.0 140 1.2425 0.5375
0.8374 15.0 150 1.2273 0.525
0.8 16.0 160 1.2454 0.5125
0.7597 17.0 170 1.2445 0.5125
0.7143 18.0 180 1.1750 0.5687
0.6832 19.0 190 1.2456 0.525
0.6573 20.0 200 1.2004 0.5938
0.639 21.0 210 1.1924 0.5563
0.635 22.0 220 1.1257 0.6
0.5982 23.0 230 1.1845 0.575
0.5675 24.0 240 1.2291 0.5625
0.5634 25.0 250 1.1837 0.5687
0.535 26.0 260 1.2384 0.5813
0.5233 27.0 270 1.1911 0.5875
0.529 28.0 280 1.2083 0.5875
0.5141 29.0 290 1.1813 0.5875
0.5166 30.0 300 1.1578 0.5938

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3