|
--- |
|
license: apache-2.0 |
|
base_model: sshleifer/distilbart-cnn-12-6 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- dialogstudio |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: my_awesome_billsum_model |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: dialogstudio |
|
type: dialogstudio |
|
config: TweetSumm |
|
split: test |
|
args: TweetSumm |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.4187 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_awesome_billsum_model |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the dialogstudio dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9811 |
|
- Rouge1: 0.4187 |
|
- Rouge2: 0.1911 |
|
- Rougel: 0.3373 |
|
- Rougelsum: 0.338 |
|
- Gen Len: 65.1636 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 55 | 2.0591 | 0.4232 | 0.1899 | 0.3412 | 0.342 | 64.8545 | |
|
| No log | 2.0 | 110 | 1.9802 | 0.4125 | 0.19 | 0.3329 | 0.3334 | 66.7545 | |
|
| No log | 3.0 | 165 | 1.9671 | 0.4172 | 0.1927 | 0.3348 | 0.3357 | 65.3545 | |
|
| No log | 4.0 | 220 | 1.9811 | 0.4187 | 0.1911 | 0.3373 | 0.338 | 65.1636 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|