rossevine's picture
update model card README.md
7a0097b
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: Model_G_Wav2Vec2_Version3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 0.3320902479955249

Model_G_Wav2Vec2_Version3

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4863
  • Wer: 0.3321
  • Cer: 0.0851

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.7935 5.97 400 0.6443 0.6220 0.1605
0.2843 11.94 800 0.5294 0.4286 0.1090
0.1364 17.91 1200 0.4766 0.3774 0.0969
0.0914 23.88 1600 0.4960 0.3408 0.0880
0.0662 29.85 2000 0.4863 0.3321 0.0851

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 1.18.3
  • Tokenizers 0.13.3