Transformers
PyTorch
Portuguese
israelcamp's picture
Update README.md
d6a2b22
|
raw
history blame
1.33 kB
metadata
inference: false
language: pt
datasets:
  - assin2
license: mit

DeBERTinha XSmall for Recognizing Textual Entailment

Labels:

  • 0 : There is no entailment between premise and hypothesis.
  • 1 : There is entailment between premise and hypothesis.

Full classification example

from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import numpy as np
import torch
from scipy.special import softmax

model_name = "sagui-nlp/debertinha-ptbr-xsmall-assin2-rte"
s1 = "Os homens estão cuidadosamente colocando as malas no porta-malas de um carro."
s2 = "Os homens estão colocando bagagens dentro do porta-malas de um carro."
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt")
with torch.no_grad():
    output = model(**model_input)
    scores = output[0][0].detach().numpy()
    scores = softmax(scores)
    ranking = np.argsort(scores)
    ranking = ranking[::-1]
    for i in range(scores.shape[0]):
        l = config.id2label[ranking[i]]
        s = scores[ranking[i]]
        print(f"{i+1}) Label: {l} Score: {np.round(float(s), 4)}")

Citation

Comming soon