text-classification / README.md
sanar085's picture
Update README.md
50977a9 verified
---
base_model: mrm8488/electricidad-base-discriminator
tags:
- classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# text-classification
This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4197
- Accuracy: 0.4503
## Model description
Este modelo emplea un algoritmo de clasificación de textos. Emplea el modelo Electricidad para tokenizar el texto.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 388 | 1.3400 | 0.4052 |
| 1.3886 | 2.0 | 776 | 1.2878 | 0.4387 |
| 0.9608 | 3.0 | 1164 | 1.4197 | 0.4503 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0