nanogpt2_test / model_gpt2.py
sayanbanerjee32's picture
Upload folder using huggingface_hub
11c24e8 verified
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import inspect
#------------------------------------------
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
# key, query, value projection for al heads but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = True
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
# not really a 'bias', more of a mask, but following a openAI/HF naming
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size() # batch_size, sequence_length, embedding dimensionality (n_embed)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# e.g. in GPT-2(124M), n_head = 12, hs = 64, so, nh*hs=C=768 channels in the transformer
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# attention (materilizes the large (T,T) matrix for all the queries and keys)
# att = (q @ k.transpose(-2, -1)) * (1.0 / torch.sqrt(torch.tensor(k.size(-1))))
# att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
# att = F.softmax(att, dim=-1)
# y = att @ v # (B, nh, T, T) @ (B, nh, T, hs) -> (B, nh, T, T)
# 4 lines above replaced by flash- attention
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh') # historic reason for approximation
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = True
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024 # max sequence lenghts
vocab_size: int = 50257 # number of tokens, 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|>
n_layer: int = 12 # number of layers
n_head: int = 12 # number of heads
n_embd: int = 768 # embedding dim
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing scheme
self.transformer.wte.weight = self.lm_head.weight
# init
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std = (2 * self.config.n_layer) ** -0.5 # 2 times as each layer has attention and MLP
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) # word embedding will be initialised twice
def forward(self, idx, target = None):
# idx of shape (B, T)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
# forward thetoken and position embedding
pos = torch.arange(0, T, dtype = torch.long, device=idx.device) # (T)
pos_emb = self.transformer.wpe(pos) # (T, C)
tok_emb = self.transformer.wte(idx) # (B, T, C)
x = tok_emb + pos_emb # (B, T, C)
# forward the block for transformer
for block in self.transformer.h:
x = block(x)
# forward the final layer nor and classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B, T, vocab_size)
# compute the loss
loss = None
if target is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
""" Loads pretrained GPT2 model from HuggingFace """
assert model_type in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"}
from transformers import GPT2LMHeadModel
print(f"Loading {model_type} model...")
config_args = {
"gpt2": dict(n_layer = 12, n_head = 12, n_embd = 768), # 124M
"gpt2-medium": dict(n_layer = 24, n_head = 16, n_embd = 1024), # 350M
"gpt2-large": dict(n_layer = 36, n_head = 20, n_embd = 1280), # 774M
"gpt2-xl": dict(n_layer = 48, n_head = 25, n_embd = 1600), # 1558M
}[model_type]
config_args["vocab_size"] = 50257 # always for GPT2 checkpoints
config_args["block_size"] = 1024 # always for GPT2 checkpoints
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith(".attn.bias")] # discard this mask
# init hugging face model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
sd_keys_hf = sd_hf.keys()
# copy while ensuring all of the parameters are aligned and match in names and types
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith(".attn.masked_bias")] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith(".attn.bias")] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"using fused AdamW: {use_fused}")
return optimizer
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
# forward the model to get the logits for the index in the sequence
logits, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx