|
--- |
|
license: mit |
|
tags: |
|
- vision |
|
- image-segmentation |
|
widget: |
|
- src: >- |
|
https://images.unsplash.com/photo-1643310325061-2beef64926a5?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8Nnx8cmFjb29uc3xlbnwwfHwwfHw%3D&w=1000&q=80 |
|
example_title: Person |
|
- src: >- |
|
https://freerangestock.com/sample/139043/young-man-standing-and-leaning-on-car.jpg |
|
example_title: Person |
|
datasets: |
|
- mattmdjaga/human_parsing_dataset |
|
pipeline_tag: image-segmentation |
|
--- |
|
# Segformer B3 fine-tuned for clothes segmentation |
|
|
|
SegFormer model fine-tuned on [ATR dataset](https://github.com/lemondan/HumanParsing-Dataset) for clothes segmentation but can also be used for human segmentation. |
|
The dataset on hugging face is called "mattmdjaga/human_parsing_dataset". |
|
|
|
|
|
**NEW** - |
|
**[Training code](https://github.com/mattmdjaga/segformer_b2_clothes)**. Right now it only contains the pure code with some comments, but soon I'll add a colab notebook version |
|
and a blog post with it to make it more friendly. |
|
|
|
```python |
|
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation |
|
from PIL import Image |
|
import requests |
|
import matplotlib.pyplot as plt |
|
import torch.nn as nn |
|
|
|
processor = SegformerImageProcessor.from_pretrained("sayeed99/segformer_b3_clothes") |
|
model = AutoModelForSemanticSegmentation.from_pretrained("sayeed99/segformer_b3_clothes") |
|
|
|
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80" |
|
|
|
image = Image.open(requests.get(url, stream=True).raw) |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
logits = outputs.logits.cpu() |
|
|
|
upsampled_logits = nn.functional.interpolate( |
|
logits, |
|
size=image.size[::-1], |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
pred_seg = upsampled_logits.argmax(dim=1)[0] |
|
plt.imshow(pred_seg) |
|
``` |
|
|
|
Labels: 0: "Background", 1: "Hat", 2: "Hair", 3: "Sunglasses", 4: "Upper-clothes", 5: "Skirt", 6: "Pants", 7: "Dress", 8: "Belt", 9: "Left-shoe", 10: "Right-shoe", 11: "Face", 12: "Left-leg", 13: "Right-leg", 14: "Left-arm", 15: "Right-arm", 16: "Bag", 17: "Scarf" |
|
|
|
### Evaluation |
|
|
|
| Label Index | Label Name | Category Accuracy | Category IoU | |
|
|:-------------:|:----------------:|:-----------------:|:------------:| |
|
| 0 | Background | 0.99 | 0.99 | |
|
| 1 | Hat | 0.73 | 0.68 | |
|
| 2 | Hair | 0.91 | 0.82 | |
|
| 3 | Sunglasses | 0.73 | 0.63 | |
|
| 4 | Upper-clothes | 0.87 | 0.78 | |
|
| 5 | Skirt | 0.76 | 0.65 | |
|
| 6 | Pants | 0.90 | 0.84 | |
|
| 7 | Dress | 0.74 | 0.55 | |
|
| 8 | Belt | 0.35 | 0.30 | |
|
| 9 | Left-shoe | 0.74 | 0.58 | |
|
| 10 | Right-shoe | 0.75 | 0.60 | |
|
| 11 | Face | 0.92 | 0.85 | |
|
| 12 | Left-leg | 0.90 | 0.82 | |
|
| 13 | Right-leg | 0.90 | 0.81 | |
|
| 14 | Left-arm | 0.86 | 0.74 | |
|
| 15 | Right-arm | 0.82 | 0.73 | |
|
| 16 | Bag | 0.91 | 0.84 | |
|
| 17 | Scarf | 0.63 | 0.29 | |
|
|
|
Overall Evaluation Metrics: |
|
- Evaluation Loss: 0.15 |
|
- Mean Accuracy: 0.80 |
|
- Mean IoU: 0.69 |
|
|
|
### License |
|
|
|
The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). |
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@article{DBLP:journals/corr/abs-2105-15203, |
|
author = {Enze Xie and |
|
Wenhai Wang and |
|
Zhiding Yu and |
|
Anima Anandkumar and |
|
Jose M. Alvarez and |
|
Ping Luo}, |
|
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with |
|
Transformers}, |
|
journal = {CoRR}, |
|
volume = {abs/2105.15203}, |
|
year = {2021}, |
|
url = {https://arxiv.org/abs/2105.15203}, |
|
eprinttype = {arXiv}, |
|
eprint = {2105.15203}, |
|
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
``` |