skytect's picture
update model card README.md
6a27843
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: conditional-detr-resnet-50_til-2023-cv-9
    results: []

conditional-detr-resnet-50_til-2023-cv-9

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2502
  • Loss Ce: 0.0010
  • Loss Bbox: 0.0160
  • Loss Giou: 0.0842
  • Cardinality Error: 2.1237
  • Map: 0.8063
  • Map 50: 0.9901
  • Map 75: 0.9609
  • Map Small: 0.8063
  • Map Medium: -1.0
  • Map Large: -1.0
  • Mar 1: 0.4097
  • Mar 10: 0.8555
  • Mar 100: 0.8555
  • Mar Small: 0.8555
  • Mar Medium: -1.0
  • Mar Large: -1.0
  • Map Per Class: -1.0
  • Mar 100 Per Class: -1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Loss Ce Loss Bbox Loss Giou Cardinality Error Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Per Class Mar 100 Per Class
0.4695 1.0 708 0.4327 0.0120 0.0256 0.1404 2.1237 0.7356 0.9796 0.9229 0.7356 -1.0 -1.0 0.3810 0.7910 0.7910 0.7910 -1.0 -1.0 -1.0 -1.0
0.2915 2.0 1416 0.3432 0.0056 0.0217 0.1118 2.1237 0.7640 0.9892 0.9391 0.7640 -1.0 -1.0 0.3900 0.8128 0.8128 0.8128 -1.0 -1.0 -1.0 -1.0
0.2713 3.0 2124 0.3150 0.0063 0.0194 0.1026 2.1237 0.7819 0.9894 0.9494 0.7819 -1.0 -1.0 0.3977 0.8274 0.8274 0.8274 -1.0 -1.0 -1.0 -1.0
0.2583 4.0 2832 0.2754 0.0026 0.0174 0.0915 2.1237 0.7931 0.9898 0.9515 0.7931 -1.0 -1.0 0.4026 0.8387 0.8387 0.8387 -1.0 -1.0 -1.0 -1.0
0.2264 5.0 3540 0.2768 0.0019 0.0178 0.0921 2.1237 0.8011 0.9899 0.9623 0.8011 -1.0 -1.0 0.4057 0.8452 0.8452 0.8452 -1.0 -1.0 -1.0 -1.0
0.2841 6.0 4248 0.3362 0.0049 0.0207 0.1115 2.1237 0.7973 0.9900 0.9614 0.7973 -1.0 -1.0 0.4043 0.8434 0.8434 0.8434 -1.0 -1.0 -1.0 -1.0
0.2929 7.0 4956 0.3310 0.0078 0.0203 0.1071 2.1237 0.7986 0.9899 0.9616 0.7986 -1.0 -1.0 0.4053 0.8445 0.8445 0.8445 -1.0 -1.0 -1.0 -1.0
0.2405 8.0 5664 0.2681 0.0017 0.0168 0.0904 2.1237 0.8018 0.9900 0.9619 0.8018 -1.0 -1.0 0.4067 0.8481 0.8481 0.8481 -1.0 -1.0 -1.0 -1.0
0.1851 9.0 6372 0.2680 0.0019 0.0168 0.0901 2.1237 0.8050 0.9900 0.9622 0.8050 -1.0 -1.0 0.4081 0.8511 0.8511 0.8511 -1.0 -1.0 -1.0 -1.0
0.1842 10.0 7080 0.2553 0.0013 0.0163 0.0856 2.1237 0.8074 0.9900 0.9627 0.8074 -1.0 -1.0 0.4095 0.8544 0.8544 0.8544 -1.0 -1.0 -1.0 -1.0
0.3201 11.0 7788 0.3556 0.0034 0.0226 0.1179 2.1237 0.8040 0.9900 0.9617 0.8040 -1.0 -1.0 0.4080 0.8511 0.8511 0.8511 -1.0 -1.0 -1.0 -1.0
0.266 12.0 8496 0.3296 0.0021 0.0191 0.1151 2.1237 0.7996 0.9900 0.9600 0.7996 -1.0 -1.0 0.4069 0.8489 0.8489 0.8489 -1.0 -1.0 -1.0 -1.0
0.2086 13.0 9204 0.2753 0.0016 0.0178 0.0916 2.1237 0.8007 0.9900 0.9603 0.8007 -1.0 -1.0 0.4076 0.8506 0.8506 0.8506 -1.0 -1.0 -1.0 -1.0
0.1853 14.0 9912 0.2452 0.0009 0.0156 0.0827 2.1237 0.8037 0.9900 0.9606 0.8037 -1.0 -1.0 0.4088 0.8533 0.8533 0.8533 -1.0 -1.0 -1.0 -1.0
0.1588 15.0 10620 0.2502 0.0010 0.0160 0.0842 2.1237 0.8063 0.9901 0.9609 0.8063 -1.0 -1.0 0.4097 0.8555 0.8555 0.8555 -1.0 -1.0 -1.0 -1.0

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3