|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- funsd |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-funsd |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: funsd |
|
type: funsd |
|
config: funsd |
|
split: test |
|
args: funsd |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7467652495378928 |
|
- name: Recall |
|
type: recall |
|
value: 0.8027819175360159 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7737610725401005 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8188517770117675 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-funsd |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5984 |
|
- Precision: 0.7468 |
|
- Recall: 0.8028 |
|
- F1: 0.7738 |
|
- Accuracy: 0.8189 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.67 | 100 | 1.0197 | 0.5025 | 0.5981 | 0.5462 | 0.6622 | |
|
| No log | 1.34 | 200 | 0.6833 | 0.6203 | 0.7238 | 0.6680 | 0.7608 | |
|
| No log | 2.01 | 300 | 0.6237 | 0.6401 | 0.7794 | 0.7030 | 0.7846 | |
|
| No log | 2.68 | 400 | 0.6028 | 0.6892 | 0.7392 | 0.7133 | 0.7771 | |
|
| 0.8343 | 3.36 | 500 | 0.5948 | 0.7175 | 0.7884 | 0.7512 | 0.7991 | |
|
| 0.8343 | 4.03 | 600 | 0.5953 | 0.7135 | 0.8028 | 0.7555 | 0.7961 | |
|
| 0.8343 | 4.7 | 700 | 0.5925 | 0.7354 | 0.7953 | 0.7642 | 0.8174 | |
|
| 0.8343 | 5.37 | 800 | 0.6055 | 0.7397 | 0.7933 | 0.7656 | 0.8134 | |
|
| 0.8343 | 6.04 | 900 | 0.5940 | 0.7535 | 0.8077 | 0.7797 | 0.8199 | |
|
| 0.3468 | 6.71 | 1000 | 0.5984 | 0.7468 | 0.8028 | 0.7738 | 0.8189 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0.dev0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|