Phi-3.5-MultiCap-tool-lora

This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss
0.7255 0.2256 50 0.7138
0.4783 0.4512 100 0.4788
0.4616 0.6768 150 0.4543
0.4794 0.9024 200 0.4437
0.4174 1.1280 250 0.4357
0.4097 1.3536 300 0.4310
0.3829 1.5792 350 0.4280
0.4358 1.8049 400 0.4264
0.4013 2.0305 450 0.4261
0.3685 2.2561 500 0.4268
0.3823 2.4817 550 0.4276
0.401 2.7073 600 0.4294
0.3975 2.9329 650 0.4310
0.4012 3.1585 700 0.4373
0.3497 3.3841 750 0.4401
0.3613 3.6097 800 0.4456
0.3649 3.8353 850 0.4522
0.3384 4.0609 900 0.4575
0.3241 4.2865 950 0.4628
0.322 4.5121 1000 0.4662
0.3397 4.7377 1050 0.4720
0.3228 4.9633 1100 0.4788
0.3391 5.1889 1150 0.4820
0.3369 5.4146 1200 0.4861
0.3424 5.6402 1250 0.4873
0.3302 5.8658 1300 0.4902

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sofyc/Phi-3.5-MultiCap-tool-lora

Adapter
(125)
this model