Spaces:
Sleeping
Sleeping
title: Cinemo | |
app_file: demo.py | |
sdk: gradio | |
sdk_version: 4.37.2 | |
tags: | |
- Image-2-Video | |
- LLM | |
- Large Language Model | |
short_description: Multimodal Image-to-Video | |
emoji: π₯ | |
colorFrom: green | |
colorTo: indigo | |
## Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br><sub>Official PyTorch Implementation</sub> | |
[![Arxiv](https://img.shields.io/badge/Arxiv-b31b1b.svg)](https://arxiv.org/abs/2407.15642) | |
[![Project Page](https://img.shields.io/badge/Project-Website-blue)](https://maxin-cn.github.io/cinemo_project/) | |
This repo contains pre-trained weights, and sampling code for our paper exploring image animation with motion diffusion models (Cinemo). You can find more visualizations on our [project page](https://maxin-cn.github.io/cinemo_project/). | |
In this project, we propose a novel method called Cinemo, which can perform motion-controllable image animation with strong consistency and smoothness. To improve motion smoothness, Cinemo learns the distribution of motion residuals, rather than directly generating subsequent frames. Additionally, a structural similarity index-based method is proposed to control the motion intensity. Furthermore, we propose a noise refinement technique based on discrete cosine transformation to ensure temporal consistency. These three methods help Cinemo generate highly consistent, smooth, and motion-controlled image animation results. Compared to previous methods, Cinemo offers simpler and more precise user control and better generative performance. | |
<div align="center"> | |
<img src="visuals/pipeline.svg"> | |
</div> | |
## News | |
- (π₯ New) Jul. 23, 2024. π₯ Our paper is released on [arxiv](https://arxiv.org/abs/2407.15642). | |
- (π₯ New) Jun. 2, 2024. π₯ The inference code is released. The checkpoint can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main). | |
## Setup | |
First, download and set up the repo: | |
```bash | |
git clone https://github.com/maxin-cn/Cinemo | |
cd Cinemo | |
``` | |
We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment. If you only want | |
to run pre-trained models locally on CPU, you can remove the `cudatoolkit` and `pytorch-cuda` requirements from the file. | |
```bash | |
conda env create -f environment.yml | |
conda activate cinemo | |
``` | |
## Animation | |
You can sample from our **pre-trained Cinemo models** with [`animation.py`](pipelines/animation.py). Weights for our pre-trained Cinemo model can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main). The script has various arguments for adjusting sampling steps, changing the classifier-free guidance scale, etc: | |
```bash | |
bash pipelines/animation.sh | |
``` | |
All related checkpoints will download automatically and then you will get the following results, | |
<table style="width:100%; text-align:center;"> | |
<tr> | |
<td align="center">Input image</td> | |
<td align="center">Output video</td> | |
<td align="center">Input image</td> | |
<td align="center">Output video</td> | |
</tr> | |
<tr> | |
<td align="center"><img src="visuals/animations/people_walking/0.jpg" width="100%"></td> | |
<td align="center"><img src="visuals/animations/people_walking/people_walking.gif" width="100%"></td> | |
<td align="center"><img src="visuals/animations/sea_swell/0.jpg" width="100%"></td> | |
<td align="center"><img src="visuals/animations/sea_swell/sea_swell.gif" width="100%"></td> | |
</tr> | |
<tr> | |
<td align="center" colspan="2">"People Walking"</td> | |
<td align="center" colspan="2">"Sea Swell"</td> | |
</tr> | |
<tr> | |
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/0.jpg" width="100%"></td> | |
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/girl_dancing_under_the_stars.gif" width="100%"></td> | |
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/0.jpg" width="100%"></td> | |
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/dragon_glowing_eyes.gif" width="100%"></td> | |
</tr> | |
<tr> | |
<td align="center" colspan="2">"Girl Dancing under the Stars"</td> | |
<td align="center" colspan="2">"Dragon Glowing Eyes"</td> | |
</tr> | |
</table> | |
## Other Applications | |
You can also utilize Cinemo for other applications, such as motion transfer and video editing: | |
```bash | |
bash pipelines/video_editing.sh | |
``` | |
All related checkpoints will download automatically and you will get the following results, | |
<table style="width:100%; text-align:center;"> | |
<tr> | |
<td align="center">Input video</td> | |
<td align="center">First frame</td> | |
<td align="center">Edited first frame</td> | |
<td align="center">Output video</td> | |
</tr> | |
<tr> | |
<td align="center"><img src="visuals/video_editing/origin/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td> | |
<td align="center"><img src="visuals/video_editing/origin/0.jpg" width="100%"></td> | |
<td align="center"><img src="visuals/video_editing/edit/0.jpg" width="100%"></td> | |
<td align="center"><img src="visuals/video_editing/edit/editing_a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td> | |
</tr> | |
</table> | |
## Citation | |
If you find this work useful for your research, please consider citing it. | |
```bibtex | |
@article{ma2024cinemo, | |
title={Cinemo: Latent Diffusion Transformer for Video Generation}, | |
author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu}, | |
journal={arXiv preprint arXiv:2407.15642}, | |
year={2024} | |
} | |
``` | |
## Acknowledgments | |
Cinemo has been greatly inspired by the following amazing works and teams: [LaVie](https://github.com/Vchitect/LaVie) and [SEINE](https://github.com/Vchitect/SEINE), we thank all the contributors for open-sourcing. | |
## License | |
The code and model weights are licensed under [LICENSE](LICENSE). |