Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This file is part of ComfyUI. | |
Copyright (C) 2024 Stability AI | |
This program is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
This program is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with this program. If not, see <https://www.gnu.org/licenses/>. | |
""" | |
import torch | |
import torch.nn as nn | |
from comfy.ldm.modules.attention import optimized_attention | |
import comfy.ops | |
class OptimizedAttention(nn.Module): | |
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.heads = nhead | |
self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device) | |
self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device) | |
self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device) | |
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device) | |
def forward(self, q, k, v): | |
q = self.to_q(q) | |
k = self.to_k(k) | |
v = self.to_v(v) | |
out = optimized_attention(q, k, v, self.heads) | |
return self.out_proj(out) | |
class Attention2D(nn.Module): | |
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations) | |
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device) | |
def forward(self, x, kv, self_attn=False): | |
orig_shape = x.shape | |
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4 | |
if self_attn: | |
kv = torch.cat([x, kv], dim=1) | |
# x = self.attn(x, kv, kv, need_weights=False)[0] | |
x = self.attn(x, kv, kv) | |
x = x.permute(0, 2, 1).view(*orig_shape) | |
return x | |
def LayerNorm2d_op(operations): | |
class LayerNorm2d(operations.LayerNorm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, x): | |
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
return LayerNorm2d | |
class GlobalResponseNorm(nn.Module): | |
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105" | |
def __init__(self, dim, dtype=None, device=None): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device)) | |
self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device)) | |
def forward(self, x): | |
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) | |
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) | |
return comfy.ops.cast_to_input(self.gamma, x) * (x * Nx) + comfy.ops.cast_to_input(self.beta, x) + x | |
class ResBlock(nn.Module): | |
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2): | |
super().__init__() | |
self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device) | |
# self.depthwise = SAMBlock(c, num_heads, expansion) | |
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.channelwise = nn.Sequential( | |
operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device), | |
nn.GELU(), | |
GlobalResponseNorm(c * 4, dtype=dtype, device=device), | |
nn.Dropout(dropout), | |
operations.Linear(c * 4, c, dtype=dtype, device=device) | |
) | |
def forward(self, x, x_skip=None): | |
x_res = x | |
x = self.norm(self.depthwise(x)) | |
if x_skip is not None: | |
x = torch.cat([x, x_skip], dim=1) | |
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
return x + x_res | |
class AttnBlock(nn.Module): | |
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.self_attn = self_attn | |
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations) | |
self.kv_mapper = nn.Sequential( | |
nn.SiLU(), | |
operations.Linear(c_cond, c, dtype=dtype, device=device) | |
) | |
def forward(self, x, kv): | |
kv = self.kv_mapper(kv) | |
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn) | |
return x | |
class FeedForwardBlock(nn.Module): | |
def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.channelwise = nn.Sequential( | |
operations.Linear(c, c * 4, dtype=dtype, device=device), | |
nn.GELU(), | |
GlobalResponseNorm(c * 4, dtype=dtype, device=device), | |
nn.Dropout(dropout), | |
operations.Linear(c * 4, c, dtype=dtype, device=device) | |
) | |
def forward(self, x): | |
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
return x | |
class TimestepBlock(nn.Module): | |
def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None): | |
super().__init__() | |
self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device) | |
self.conds = conds | |
for cname in conds: | |
setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)) | |
def forward(self, x, t): | |
t = t.chunk(len(self.conds) + 1, dim=1) | |
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1) | |
for i, c in enumerate(self.conds): | |
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1) | |
a, b = a + ac, b + bc | |
return x * (1 + a) + b | |