Spaces:
Running
Running
from pathlib import Path | |
import pandas as pd | |
import streamlit as st | |
# from mlip_arena.models.utils import MLIPEnum, REGISTRY | |
from mlip_arena.models import REGISTRY | |
DATA_DIR = Path("mlip_arena/tasks/diatomics") | |
# methods = ["MACE-MP", "Equiformer", "CHGNet", "MACE-OFF", "eSCN", "ALIGNN"] | |
dfs = [pd.read_json(DATA_DIR / REGISTRY[model].get("family") / "homonuclear-diatomics.json") for model in REGISTRY] | |
df = pd.concat(dfs, ignore_index=True) | |
table = pd.DataFrame(columns=[ | |
"Model", | |
"Supported elements", | |
# "No. of reversed forces", | |
# "Energy-consistent forces", | |
"Prediction", | |
"NVT", | |
"NPT", | |
"Code", | |
"Paper", | |
"Last updated", | |
]) | |
for model in REGISTRY: | |
rows = df[df["method"] == model] | |
metadata = REGISTRY.get(model, {}) | |
new_row = { | |
"Model": model, | |
"Supported elements": len(rows["name"].unique()), | |
# "No. of reversed forces": None, # Replace with actual logic if available | |
# "Energy-consistent forces": None, # Replace with actual logic if available | |
"Prediction": metadata.get("prediction", None), | |
"NVT": "✅" if metadata.get("nvt", False) else "❌", | |
"NPT": "✅" if metadata.get("npt", False) else "❌", | |
"Code": metadata.get("github", None) if metadata else None, | |
"Paper": metadata.get("doi", None) if metadata else None, | |
} | |
table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True) | |
table.set_index("Model", inplace=True) | |
s = table.style.background_gradient( | |
cmap="PuRd", | |
subset=["Supported elements"], | |
vmin=0, vmax=120 | |
) | |
st.warning("MLIP Arena is currently in **pre-alpha**. The results are not stable. Please interpret them with care.", icon="⚠️") | |
st.info("Contributions are welcome. For more information, visit https://github.com/atomind-ai/mlip-arena.", icon="🤗") | |
st.markdown( | |
""" | |
<h1 style='text-align: center;'>⚔️ MLIP Arena Leaderboard ⚔️</h1> | |
MLIP Arena is a platform for benchmarking foundation machine learning interatomic potentials (MLIPs), mainly for disclosing the learned physics and chemistry of the models and their performance on molecular dynamics (MD) simulations. | |
The benchmarks are designed to evaluate the readiness and reliability of open-source, open-weight models to reproduce the qualitatively or quantitatively correct physics. | |
""", unsafe_allow_html=True) | |
st.header("Summary", divider=True) | |
st.dataframe( | |
s, | |
use_container_width=True, | |
column_config={ | |
"Code": st.column_config.LinkColumn( | |
# "GitHub", | |
# help="The top trending Streamlit apps", | |
# validate="^https://[a-z]+\.streamlit\.app$", | |
max_chars=100, | |
display_text="GitHub", | |
), | |
"Paper": st.column_config.LinkColumn( | |
# validate="^https://[a-z]+\.streamlit\.app$", | |
max_chars=100, | |
display_text="arXiv", | |
), | |
}, | |
) | |