File size: 11,870 Bytes
50a465a
57a0425
 
640c7a9
 
4038683
 
 
 
640c7a9
 
57a0425
ec81974
640c7a9
57a0425
 
 
 
 
 
 
 
 
 
 
 
 
 
640c7a9
 
 
57a0425
d1d6d52
 
 
66e71e9
d1d6d52
 
 
640c7a9
d1d6d52
 
 
 
 
 
 
 
640c7a9
270aac5
a78c4d2
5020c09
a78c4d2
2ff2fb2
5020c09
 
2ff2fb2
464a3bb
 
59ad67f
a78c4d2
2ff2fb2
 
270aac5
43ba1c2
640c7a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270aac5
640c7a9
 
 
 
 
 
 
 
 
 
 
 
 
270aac5
640c7a9
2ff2fb2
 
 
 
57a0425
5020c09
 
 
 
 
 
0dc767e
 
 
 
 
640c7a9
 
 
 
 
 
 
270aac5
640c7a9
 
 
 
 
 
 
 
 
 
 
 
 
b485212
640c7a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5020c09
 
 
 
 
464a3bb
4038683
 
 
 
 
 
8d7bc9c
9f9688c
4038683
a2e1737
640c7a9
5c76b5d
 
d9f0542
4221a85
10b8cf9
fcf9342
6f04993
a2e1737
10b8cf9
fe94638
96e3a47
fe94638
 
 
 
 
2ff2fb2
a2e1737
 
10b8cf9
 
 
 
 
 
 
 
 
 
79605da
10b8cf9
 
a2e1737
5dae26f
640c7a9
 
 
 
4221a85
640c7a9
 
 
 
 
fe94638
96e3a47
fe94638
 
 
 
 
640c7a9
 
 
 
 
 
 
 
 
 
 
 
 
79605da
640c7a9
 
 
 
 
 
 
 
4221a85
640c7a9
 
 
 
 
fe94638
4221a85
 
 
 
 
 
640c7a9
 
 
 
 
 
 
 
 
 
 
 
 
79605da
640c7a9
 
4038683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe94638
4038683
 
 
640c7a9
5dae26f
57a0425
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import logging
import sys
from config import WEAVE_PROJECT, WANDB_API_KEY
import weave
from model_utils import get_model_summary, install_flash_attn

# Install required package
install_flash_attn()

weave.init(WEAVE_PROJECT)

# Function to get logging level from environment variable
def get_logging_level(default_level=logging.INFO):  # Default to DEBUG for detailed logs
    log_level_str = os.getenv('VISION_AGENT_LOG_LEVEL', '').upper()
    if log_level_str == 'DEBUG':
        return logging.DEBUG
    elif log_level_str == 'INFO':
        return logging.INFO
    elif log_level_str == 'WARNING':
        return logging.WARNING
    elif log_level_str == 'ERROR':
        return logging.ERROR
    elif log_level_str == 'CRITICAL':
        return logging.CRITICAL
    else:
        return default_level

# Initialize logger
logging.basicConfig(level=get_logging_level(), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger('vision_agent')

from huggingface_hub import login
import time
import gradio as gr
from typing import *
from pillow_heif import register_heif_opener
register_heif_opener()
import vision_agent as va
from vision_agent.tools import register_tool, load_image, owl_v2, grounding_dino, florencev2_object_detection, overlay_bounding_boxes, save_image

# Perform login using the token
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token, add_to_git_credential=True)

import numpy as np
from PIL import Image

@weave.op()
def detect_object_owlv2(image, seg_input, debug: bool = True):
    """
    Detects a brain tumor in the given image and returns the annotated image.

    Parameters:
        image: The input image (as numpy array provided by Gradio).
        seg_input: The segmentation input (not used in this function, but required for Gradio).
        debug (bool): Flag to enable logging for debugging purposes.

    Returns:
        tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
    """

    # Step 2: Detect brain tumor using owl_v2
    prompt = seg_input
    detections = owl_v2(prompt, image)

    # Step 3: Overlay bounding boxes on the image
    image_with_bboxes = overlay_bounding_boxes(image, detections)

    # Prepare annotations for AnnotatedImage output
    annotations = []
    for detection in detections:
        label = detection['label']
        score = detection['score']
        bbox = detection['bbox']
        x1, y1, x2, y2 = bbox
        # Convert normalized coordinates to pixel coordinates
        height, width = image.shape[:2]
        x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
        annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))

    # Convert image to numpy array if it's not already
    if isinstance(image_with_bboxes, Image.Image):
        image_with_bboxes = np.array(image_with_bboxes)

    return (image_with_bboxes, annotations)

@weave.op()
def detect_object_dino(image, seg_input, debug: bool = True):
    """
    Detects a brain tumor in the given image and returns the annotated image.

    Parameters:
        image: The input image (as numpy array provided by Gradio).
        seg_input: The segmentation input (not used in this function, but required for Gradio).
        debug (bool): Flag to enable logging for debugging purposes.

    Returns:
        tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
    """

    # Step 2: Detect brain tumor using grounding_dino
    prompt = seg_input
    detections = grounding_dino(prompt, image)

    # Step 3: Overlay bounding boxes on the image
    image_with_bboxes = overlay_bounding_boxes(image, detections)

    # Prepare annotations for AnnotatedImage output
    annotations = []
    for detection in detections:
        label = detection['label']
        score = detection['score']
        bbox = detection['bbox']
        x1, y1, x2, y2 = bbox
        # Convert normalized coordinates to pixel coordinates
        height, width = image.shape[:2]
        x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
        annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))

    # Convert image to numpy array if it's not already
    if isinstance(image_with_bboxes, Image.Image):
        image_with_bboxes = np.array(image_with_bboxes)

    return (image_with_bboxes, annotations)

@weave.op()
def detect_object_florence2(image, seg_input, debug: bool = True):
    """
    Detects a brain tumor in the given image and returns the annotated image.

    Parameters:
        image: The input image (as numpy array provided by Gradio).
        seg_input: The segmentation input (not used in this function, but required for Gradio).
        debug (bool): Flag to enable logging for debugging purposes.

    Returns:
        tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
    """

    # Step 2: Detect brain tumor using florencev2 - NO PROMPT
    detections = florencev2_object_detection(image)

    # Step 3: Overlay bounding boxes on the image
    image_with_bboxes = overlay_bounding_boxes(image, detections)

    # Prepare annotations for AnnotatedImage output
    annotations = []
    for detection in detections:
        label = detection['label']
        score = detection['score']
        bbox = detection['bbox']
        x1, y1, x2, y2 = bbox
        # Convert normalized coordinates to pixel coordinates
        height, width = image.shape[:2]
        x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
        annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))

    # Convert image to numpy array if it's not already
    if isinstance(image_with_bboxes, Image.Image):
        image_with_bboxes = np.array(image_with_bboxes)

    return (image_with_bboxes, annotations)

def handle_model_summary(model_name):
    model_summary, error_message = get_model_summary(model_name)
    if error_message:
        return error_message, ""
    return model_summary, ""

INTRO_TEXT="# 🔬🧠 OmniScience -- Agentic Imaging Analysis 🤖🧫"

with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
    gr.Markdown(INTRO_TEXT)
    with gr.Tab("Object Detection - Owl V2"):
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="numpy")
                seg_input = gr.Text(label="Entities to Segment/Detect")
        
            with gr.Column():
                annotated_image = gr.AnnotatedImage(label="Output")

        seg_btn = gr.Button("Submit")    
        examples = [
                        ["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "detect blood cell"],
                        ["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "detect liver disease"],
                        ["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"],
                        ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"],
                        ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"],
                        ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"],
                    ]
        gr.Examples(
            examples=examples,
            inputs=[image, seg_input],
        )
        seg_inputs = [
            image,
            seg_input
            ]
        seg_outputs = [
            annotated_image
        ]
        seg_btn.click(
            fn=detect_object_owlv2,
            inputs=seg_inputs,
            outputs=seg_outputs,
        )

    with gr.Tab("Object Detection - DINO"):
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="numpy")
                seg_input = gr.Text(label="Entities to Segment/Detect")
        
            with gr.Column():
                annotated_image = gr.AnnotatedImage(label="Output")

        seg_btn = gr.Button("Submit")    
        examples = [
                        ["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "detect blood cell"],
                        ["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "detect liver disease"],
                        ["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"],
                        ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"],
                        ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"],
                        ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"],
                    ]
        gr.Examples(
            examples=examples,
            inputs=[image, seg_input],
        )
        seg_inputs = [
            image,
            seg_input
            ]
        seg_outputs = [
            annotated_image
        ]
        seg_btn.click(
            fn=detect_object_dino,
            inputs=seg_inputs,
            outputs=seg_outputs,
        )

    with gr.Tab("Object Detection - Florence2"):
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="numpy")
                seg_input = gr.Text(label="Entities to Segment/Detect")
        
            with gr.Column():
                annotated_image = gr.AnnotatedImage(label="Output")

        seg_btn = gr.Button("Submit")    
        examples = [
                        ["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "<OD>"],
                        ["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "<OD>"],
                        ["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "<OD>"],
                        ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "<OD>"],
                        ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "<OD>"],
                        ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "<OD>"],
                    ]
        gr.Examples(
            examples=examples,
            inputs=[image, seg_input],
        )
        seg_inputs = [
            image,
            seg_input
            ]
        seg_outputs = [
            annotated_image
        ]
        seg_btn.click(
            fn=detect_object_florence2,
            inputs=seg_inputs,
            outputs=seg_outputs,
        )

    with gr.Tab("Model Explorer"):
        gr.Markdown("## Retrieve and Display Model Architecture")
        model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name to retrieve its architecture...")
        vision_examples = gr.Examples(
            examples=[
                ["facebook/sam-vit-huge"],
                ["google/owlv2-base-patch16-ensemble"],
                ["IDEA-Research/grounding-dino-base"],
                ["microsoft/Florence-2-large-ft"],
                ["google/paligemma-3b-mix-224"],
                ["llava-hf/llava-v1.6-mistral-7b-hf"],
                ["vikhyatk/moondream2"],
                ["microsoft/Phi-3-vision-128k-instruct"],
                ["HuggingFaceM4/idefics2-8b-chatty"]
            ],
            inputs=model_name_input
        )
        model_submit_button = gr.Button("Submit")
        model_output = gr.Textbox(label="Model Architecture", lines=20, placeholder="Model architecture will appear here...", show_copy_button=True)
        error_output = gr.Textbox(label="Error", lines=10, placeholder="Exceptions will appear here...", show_copy_button=True)
        model_submit_button.click(fn=handle_model_summary, inputs=model_name_input, outputs=[model_output, error_output])

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)