AniDoc / cotracker /models /core /model_utils.py
fffiloni's picture
Migrated from GitHub
c705408 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn.functional as F
from typing import Optional, Tuple
EPS = 1e-6
def smart_cat(tensor1, tensor2, dim):
if tensor1 is None:
return tensor2
return torch.cat([tensor1, tensor2], dim=dim)
def get_points_on_a_grid(
size: int,
extent: Tuple[float, ...],
center: Optional[Tuple[float, ...]] = None,
device: Optional[torch.device] = torch.device("cpu"),
shift_grid: bool = False,
):
r"""Get a grid of points covering a rectangular region
`get_points_on_a_grid(size, extent)` generates a :attr:`size` by
:attr:`size` grid fo points distributed to cover a rectangular area
specified by `extent`.
The `extent` is a pair of integer :math:`(H,W)` specifying the height
and width of the rectangle.
Optionally, the :attr:`center` can be specified as a pair :math:`(c_y,c_x)`
specifying the vertical and horizontal center coordinates. The center
defaults to the middle of the extent.
Points are distributed uniformly within the rectangle leaving a margin
:math:`m=W/64` from the border.
It returns a :math:`(1, \text{size} \times \text{size}, 2)` tensor of
points :math:`P_{ij}=(x_i, y_i)` where
.. math::
P_{ij} = \left(
c_x + m -\frac{W}{2} + \frac{W - 2m}{\text{size} - 1}\, j,~
c_y + m -\frac{H}{2} + \frac{H - 2m}{\text{size} - 1}\, i
\right)
Points are returned in row-major order.
Args:
size (int): grid size.
extent (tuple): height and with of the grid extent.
center (tuple, optional): grid center.
device (str, optional): Defaults to `"cpu"`.
Returns:
Tensor: grid.
"""
if size == 1:
return torch.tensor([extent[1] / 2, extent[0] / 2], device=device)[None, None]
if center is None:
center = [extent[0] / 2, extent[1] / 2]
margin = extent[1] / 64
range_y = (margin - extent[0] / 2 + center[0], extent[0] / 2 + center[0] - margin)
range_x = (margin - extent[1] / 2 + center[1], extent[1] / 2 + center[1] - margin)
grid_y, grid_x = torch.meshgrid(
torch.linspace(*range_y, size, device=device),
torch.linspace(*range_x, size, device=device),
indexing="ij",
)
if shift_grid:
# shift the grid randomly
# grid_x: (10, 10)
# grid_y: (10, 10)
shift_x = (range_x[1] - range_x[0]) / (size - 1)
shift_y = (range_y[1] - range_y[0]) / (size - 1)
grid_x = grid_x + torch.randn_like(grid_x) / 3 * shift_x / 2
grid_y = grid_y + torch.randn_like(grid_y) / 3 * shift_y / 2
# stay within the bounds
grid_x = torch.clamp(grid_x, range_x[0], range_x[1])
grid_y = torch.clamp(grid_y, range_y[0], range_y[1])
return torch.stack([grid_x, grid_y], dim=-1).reshape(1, -1, 2)
def reduce_masked_mean(input, mask, dim=None, keepdim=False):
r"""Masked mean
`reduce_masked_mean(x, mask)` computes the mean of a tensor :attr:`input`
over a mask :attr:`mask`, returning
.. math::
\text{output} =
\frac
{\sum_{i=1}^N \text{input}_i \cdot \text{mask}_i}
{\epsilon + \sum_{i=1}^N \text{mask}_i}
where :math:`N` is the number of elements in :attr:`input` and
:attr:`mask`, and :math:`\epsilon` is a small constant to avoid
division by zero.
`reduced_masked_mean(x, mask, dim)` computes the mean of a tensor
:attr:`input` over a mask :attr:`mask` along a dimension :attr:`dim`.
Optionally, the dimension can be kept in the output by setting
:attr:`keepdim` to `True`. Tensor :attr:`mask` must be broadcastable to
the same dimension as :attr:`input`.
The interface is similar to `torch.mean()`.
Args:
inout (Tensor): input tensor.
mask (Tensor): mask.
dim (int, optional): Dimension to sum over. Defaults to None.
keepdim (bool, optional): Keep the summed dimension. Defaults to False.
Returns:
Tensor: mean tensor.
"""
mask = mask.expand_as(input)
prod = input * mask
if dim is None:
numer = torch.sum(prod)
denom = torch.sum(mask)
else:
numer = torch.sum(prod, dim=dim, keepdim=keepdim)
denom = torch.sum(mask, dim=dim, keepdim=keepdim)
mean = numer / (EPS + denom)
return mean
def bilinear_sampler(input, coords, align_corners=True, padding_mode="border"):
r"""Sample a tensor using bilinear interpolation
`bilinear_sampler(input, coords)` samples a tensor :attr:`input` at
coordinates :attr:`coords` using bilinear interpolation. It is the same
as `torch.nn.functional.grid_sample()` but with a different coordinate
convention.
The input tensor is assumed to be of shape :math:`(B, C, H, W)`, where
:math:`B` is the batch size, :math:`C` is the number of channels,
:math:`H` is the height of the image, and :math:`W` is the width of the
image. The tensor :attr:`coords` of shape :math:`(B, H_o, W_o, 2)` is
interpreted as an array of 2D point coordinates :math:`(x_i,y_i)`.
Alternatively, the input tensor can be of size :math:`(B, C, T, H, W)`,
in which case sample points are triplets :math:`(t_i,x_i,y_i)`. Note
that in this case the order of the components is slightly different
from `grid_sample()`, which would expect :math:`(x_i,y_i,t_i)`.
If `align_corners` is `True`, the coordinate :math:`x` is assumed to be
in the range :math:`[0,W-1]`, with 0 corresponding to the center of the
left-most image pixel :math:`W-1` to the center of the right-most
pixel.
If `align_corners` is `False`, the coordinate :math:`x` is assumed to
be in the range :math:`[0,W]`, with 0 corresponding to the left edge of
the left-most pixel :math:`W` to the right edge of the right-most
pixel.
Similar conventions apply to the :math:`y` for the range
:math:`[0,H-1]` and :math:`[0,H]` and to :math:`t` for the range
:math:`[0,T-1]` and :math:`[0,T]`.
Args:
input (Tensor): batch of input images.
coords (Tensor): batch of coordinates.
align_corners (bool, optional): Coordinate convention. Defaults to `True`.
padding_mode (str, optional): Padding mode. Defaults to `"border"`.
Returns:
Tensor: sampled points.
"""
sizes = input.shape[2:]
assert len(sizes) in [2, 3]
if len(sizes) == 3:
# t x y -> x y t to match dimensions T H W in grid_sample
coords = coords[..., [1, 2, 0]]
if align_corners:
coords = coords * torch.tensor(
[2 / max(size - 1, 1) for size in reversed(sizes)], device=coords.device
)
else:
coords = coords * torch.tensor([2 / size for size in reversed(sizes)], device=coords.device)
coords -= 1
return F.grid_sample(input, coords, align_corners=align_corners, padding_mode=padding_mode)
def sample_features4d(input, coords):
r"""Sample spatial features
`sample_features4d(input, coords)` samples the spatial features
:attr:`input` represented by a 4D tensor :math:`(B, C, H, W)`.
The field is sampled at coordinates :attr:`coords` using bilinear
interpolation. :attr:`coords` is assumed to be of shape :math:`(B, R,
3)`, where each sample has the format :math:`(x_i, y_i)`. This uses the
same convention as :func:`bilinear_sampler` with `align_corners=True`.
The output tensor has one feature per point, and has shape :math:`(B,
R, C)`.
Args:
input (Tensor): spatial features.
coords (Tensor): points.
Returns:
Tensor: sampled features.
"""
B, _, _, _ = input.shape
# B R 2 -> B R 1 2
coords = coords.unsqueeze(2)
# B C R 1
feats = bilinear_sampler(input, coords)
return feats.permute(0, 2, 1, 3).view(
B, -1, feats.shape[1] * feats.shape[3]
) # B C R 1 -> B R C
def sample_features5d(input, coords):
r"""Sample spatio-temporal features
`sample_features5d(input, coords)` works in the same way as
:func:`sample_features4d` but for spatio-temporal features and points:
:attr:`input` is a 5D tensor :math:`(B, T, C, H, W)`, :attr:`coords` is
a :math:`(B, R1, R2, 3)` tensor of spatio-temporal point :math:`(t_i,
x_i, y_i)`. The output tensor has shape :math:`(B, R1, R2, C)`.
Args:
input (Tensor): spatio-temporal features.
coords (Tensor): spatio-temporal points.
Returns:
Tensor: sampled features.
"""
B, T, _, _, _ = input.shape
# B T C H W -> B C T H W
input = input.permute(0, 2, 1, 3, 4)
# B R1 R2 3 -> B R1 R2 1 3
coords = coords.unsqueeze(3)
# B C R1 R2 1
feats = bilinear_sampler(input, coords)
return feats.permute(0, 2, 3, 1, 4).view(
B, feats.shape[2], feats.shape[3], feats.shape[1]
) # B C R1 R2 1 -> B R1 R2 C