Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn.functional as F | |
from typing import Optional, Tuple | |
EPS = 1e-6 | |
def smart_cat(tensor1, tensor2, dim): | |
if tensor1 is None: | |
return tensor2 | |
return torch.cat([tensor1, tensor2], dim=dim) | |
def get_points_on_a_grid( | |
size: int, | |
extent: Tuple[float, ...], | |
center: Optional[Tuple[float, ...]] = None, | |
device: Optional[torch.device] = torch.device("cpu"), | |
shift_grid: bool = False, | |
): | |
r"""Get a grid of points covering a rectangular region | |
`get_points_on_a_grid(size, extent)` generates a :attr:`size` by | |
:attr:`size` grid fo points distributed to cover a rectangular area | |
specified by `extent`. | |
The `extent` is a pair of integer :math:`(H,W)` specifying the height | |
and width of the rectangle. | |
Optionally, the :attr:`center` can be specified as a pair :math:`(c_y,c_x)` | |
specifying the vertical and horizontal center coordinates. The center | |
defaults to the middle of the extent. | |
Points are distributed uniformly within the rectangle leaving a margin | |
:math:`m=W/64` from the border. | |
It returns a :math:`(1, \text{size} \times \text{size}, 2)` tensor of | |
points :math:`P_{ij}=(x_i, y_i)` where | |
.. math:: | |
P_{ij} = \left( | |
c_x + m -\frac{W}{2} + \frac{W - 2m}{\text{size} - 1}\, j,~ | |
c_y + m -\frac{H}{2} + \frac{H - 2m}{\text{size} - 1}\, i | |
\right) | |
Points are returned in row-major order. | |
Args: | |
size (int): grid size. | |
extent (tuple): height and with of the grid extent. | |
center (tuple, optional): grid center. | |
device (str, optional): Defaults to `"cpu"`. | |
Returns: | |
Tensor: grid. | |
""" | |
if size == 1: | |
return torch.tensor([extent[1] / 2, extent[0] / 2], device=device)[None, None] | |
if center is None: | |
center = [extent[0] / 2, extent[1] / 2] | |
margin = extent[1] / 64 | |
range_y = (margin - extent[0] / 2 + center[0], extent[0] / 2 + center[0] - margin) | |
range_x = (margin - extent[1] / 2 + center[1], extent[1] / 2 + center[1] - margin) | |
grid_y, grid_x = torch.meshgrid( | |
torch.linspace(*range_y, size, device=device), | |
torch.linspace(*range_x, size, device=device), | |
indexing="ij", | |
) | |
if shift_grid: | |
# shift the grid randomly | |
# grid_x: (10, 10) | |
# grid_y: (10, 10) | |
shift_x = (range_x[1] - range_x[0]) / (size - 1) | |
shift_y = (range_y[1] - range_y[0]) / (size - 1) | |
grid_x = grid_x + torch.randn_like(grid_x) / 3 * shift_x / 2 | |
grid_y = grid_y + torch.randn_like(grid_y) / 3 * shift_y / 2 | |
# stay within the bounds | |
grid_x = torch.clamp(grid_x, range_x[0], range_x[1]) | |
grid_y = torch.clamp(grid_y, range_y[0], range_y[1]) | |
return torch.stack([grid_x, grid_y], dim=-1).reshape(1, -1, 2) | |
def reduce_masked_mean(input, mask, dim=None, keepdim=False): | |
r"""Masked mean | |
`reduce_masked_mean(x, mask)` computes the mean of a tensor :attr:`input` | |
over a mask :attr:`mask`, returning | |
.. math:: | |
\text{output} = | |
\frac | |
{\sum_{i=1}^N \text{input}_i \cdot \text{mask}_i} | |
{\epsilon + \sum_{i=1}^N \text{mask}_i} | |
where :math:`N` is the number of elements in :attr:`input` and | |
:attr:`mask`, and :math:`\epsilon` is a small constant to avoid | |
division by zero. | |
`reduced_masked_mean(x, mask, dim)` computes the mean of a tensor | |
:attr:`input` over a mask :attr:`mask` along a dimension :attr:`dim`. | |
Optionally, the dimension can be kept in the output by setting | |
:attr:`keepdim` to `True`. Tensor :attr:`mask` must be broadcastable to | |
the same dimension as :attr:`input`. | |
The interface is similar to `torch.mean()`. | |
Args: | |
inout (Tensor): input tensor. | |
mask (Tensor): mask. | |
dim (int, optional): Dimension to sum over. Defaults to None. | |
keepdim (bool, optional): Keep the summed dimension. Defaults to False. | |
Returns: | |
Tensor: mean tensor. | |
""" | |
mask = mask.expand_as(input) | |
prod = input * mask | |
if dim is None: | |
numer = torch.sum(prod) | |
denom = torch.sum(mask) | |
else: | |
numer = torch.sum(prod, dim=dim, keepdim=keepdim) | |
denom = torch.sum(mask, dim=dim, keepdim=keepdim) | |
mean = numer / (EPS + denom) | |
return mean | |
def bilinear_sampler(input, coords, align_corners=True, padding_mode="border"): | |
r"""Sample a tensor using bilinear interpolation | |
`bilinear_sampler(input, coords)` samples a tensor :attr:`input` at | |
coordinates :attr:`coords` using bilinear interpolation. It is the same | |
as `torch.nn.functional.grid_sample()` but with a different coordinate | |
convention. | |
The input tensor is assumed to be of shape :math:`(B, C, H, W)`, where | |
:math:`B` is the batch size, :math:`C` is the number of channels, | |
:math:`H` is the height of the image, and :math:`W` is the width of the | |
image. The tensor :attr:`coords` of shape :math:`(B, H_o, W_o, 2)` is | |
interpreted as an array of 2D point coordinates :math:`(x_i,y_i)`. | |
Alternatively, the input tensor can be of size :math:`(B, C, T, H, W)`, | |
in which case sample points are triplets :math:`(t_i,x_i,y_i)`. Note | |
that in this case the order of the components is slightly different | |
from `grid_sample()`, which would expect :math:`(x_i,y_i,t_i)`. | |
If `align_corners` is `True`, the coordinate :math:`x` is assumed to be | |
in the range :math:`[0,W-1]`, with 0 corresponding to the center of the | |
left-most image pixel :math:`W-1` to the center of the right-most | |
pixel. | |
If `align_corners` is `False`, the coordinate :math:`x` is assumed to | |
be in the range :math:`[0,W]`, with 0 corresponding to the left edge of | |
the left-most pixel :math:`W` to the right edge of the right-most | |
pixel. | |
Similar conventions apply to the :math:`y` for the range | |
:math:`[0,H-1]` and :math:`[0,H]` and to :math:`t` for the range | |
:math:`[0,T-1]` and :math:`[0,T]`. | |
Args: | |
input (Tensor): batch of input images. | |
coords (Tensor): batch of coordinates. | |
align_corners (bool, optional): Coordinate convention. Defaults to `True`. | |
padding_mode (str, optional): Padding mode. Defaults to `"border"`. | |
Returns: | |
Tensor: sampled points. | |
""" | |
sizes = input.shape[2:] | |
assert len(sizes) in [2, 3] | |
if len(sizes) == 3: | |
# t x y -> x y t to match dimensions T H W in grid_sample | |
coords = coords[..., [1, 2, 0]] | |
if align_corners: | |
coords = coords * torch.tensor( | |
[2 / max(size - 1, 1) for size in reversed(sizes)], device=coords.device | |
) | |
else: | |
coords = coords * torch.tensor([2 / size for size in reversed(sizes)], device=coords.device) | |
coords -= 1 | |
return F.grid_sample(input, coords, align_corners=align_corners, padding_mode=padding_mode) | |
def sample_features4d(input, coords): | |
r"""Sample spatial features | |
`sample_features4d(input, coords)` samples the spatial features | |
:attr:`input` represented by a 4D tensor :math:`(B, C, H, W)`. | |
The field is sampled at coordinates :attr:`coords` using bilinear | |
interpolation. :attr:`coords` is assumed to be of shape :math:`(B, R, | |
3)`, where each sample has the format :math:`(x_i, y_i)`. This uses the | |
same convention as :func:`bilinear_sampler` with `align_corners=True`. | |
The output tensor has one feature per point, and has shape :math:`(B, | |
R, C)`. | |
Args: | |
input (Tensor): spatial features. | |
coords (Tensor): points. | |
Returns: | |
Tensor: sampled features. | |
""" | |
B, _, _, _ = input.shape | |
# B R 2 -> B R 1 2 | |
coords = coords.unsqueeze(2) | |
# B C R 1 | |
feats = bilinear_sampler(input, coords) | |
return feats.permute(0, 2, 1, 3).view( | |
B, -1, feats.shape[1] * feats.shape[3] | |
) # B C R 1 -> B R C | |
def sample_features5d(input, coords): | |
r"""Sample spatio-temporal features | |
`sample_features5d(input, coords)` works in the same way as | |
:func:`sample_features4d` but for spatio-temporal features and points: | |
:attr:`input` is a 5D tensor :math:`(B, T, C, H, W)`, :attr:`coords` is | |
a :math:`(B, R1, R2, 3)` tensor of spatio-temporal point :math:`(t_i, | |
x_i, y_i)`. The output tensor has shape :math:`(B, R1, R2, C)`. | |
Args: | |
input (Tensor): spatio-temporal features. | |
coords (Tensor): spatio-temporal points. | |
Returns: | |
Tensor: sampled features. | |
""" | |
B, T, _, _, _ = input.shape | |
# B T C H W -> B C T H W | |
input = input.permute(0, 2, 1, 3, 4) | |
# B R1 R2 3 -> B R1 R2 1 3 | |
coords = coords.unsqueeze(3) | |
# B C R1 R2 1 | |
feats = bilinear_sampler(input, coords) | |
return feats.permute(0, 2, 3, 1, 4).view( | |
B, feats.shape[2], feats.shape[3], feats.shape[1] | |
) # B C R1 R2 1 -> B R1 R2 C | |