File size: 3,090 Bytes
258d8c9 c74095e 258d8c9 c74095e 258d8c9 c74095e 258d8c9 c74095e 258d8c9 c74095e 258d8c9 c74095e 258d8c9 c74095e 258d8c9 c74095e 258d8c9 c74095e 258d8c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import gradio as gr
import jax.numpy as jnp
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
import cv2
def create_key(seed=0):
return jax.random.PRNGKey(seed)
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"JFoz/dog-cat-pose", dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
)
def infer(prompts, negative_prompts, image):
params["controlnet"] = controlnet_params
num_samples = 1 #jax.device_count()
rng = create_key(0)
rng = jax.random.split(rng, jax.device_count())
#im = canny_filter(image)
#canny_image = Image.fromarray(im)
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=50,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return output_images
#gr.Interface(infer, inputs=["text", "text", "image"], outputs="gallery").launch()
title = "Animal Pose Control Net"
description = "This is a demo on ControlNet based on canny filter."
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo:
gr.Markdown(
"""
# Animal Pose Control Net
# This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
""")
gr.Examples(
examples=[
#["a tortoiseshell cat is sitting on a cushion"],
#["a yellow dog standing on a lawn"],
["a tortoiseshell cat is sitting on a cushion", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_0.png"],
["a yellow dog standing on a lawn", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_1.png"],
]
cache_examples=True,
)
gr.Interface(fn = infer, inputs = ["text", "text", "image"], outputs = "image",
title = title, description = description, examples = gr.examples, theme='gradio/soft').launch()
gr.Markdown(
"""
* [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)
* [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose)
* [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5))
""")
|