|
import gradio as gr |
|
import jax.numpy as jnp |
|
import jax |
|
import numpy as np |
|
from flax.jax_utils import replicate |
|
from flax.training.common_utils import shard |
|
from PIL import Image |
|
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel |
|
import cv2 |
|
|
|
def create_key(seed=0): |
|
return jax.random.PRNGKey(seed) |
|
|
|
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( |
|
"JFoz/dog-cat-pose", dtype=jnp.bfloat16 |
|
) |
|
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16 |
|
) |
|
|
|
def infer(prompts, negative_prompts, image): |
|
params["controlnet"] = controlnet_params |
|
|
|
num_samples = 1 |
|
rng = create_key(0) |
|
rng = jax.random.split(rng, jax.device_count()) |
|
|
|
|
|
|
|
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) |
|
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) |
|
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) |
|
|
|
p_params = replicate(params) |
|
prompt_ids = shard(prompt_ids) |
|
negative_prompt_ids = shard(negative_prompt_ids) |
|
processed_image = shard(processed_image) |
|
|
|
output = pipe( |
|
prompt_ids=prompt_ids, |
|
image=processed_image, |
|
params=p_params, |
|
prng_seed=rng, |
|
num_inference_steps=50, |
|
neg_prompt_ids=negative_prompt_ids, |
|
jit=True, |
|
).images |
|
|
|
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) |
|
return output_images |
|
|
|
|
|
|
|
title = "Animal Pose Control Net" |
|
description = "This is a demo on ControlNet based on canny filter." |
|
|
|
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo: |
|
gr.Markdown( |
|
""" |
|
# Animal Pose Control Net |
|
# This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. |
|
""") |
|
|
|
gr.Examples( |
|
examples=[ |
|
|
|
|
|
["a tortoiseshell cat is sitting on a cushion", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_0.png"], |
|
["a yellow dog standing on a lawn", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_1.png"], |
|
] |
|
cache_examples=True, |
|
) |
|
|
|
gr.Interface(fn = infer, inputs = ["text", "text", "image"], outputs = "image", |
|
title = title, description = description, examples = gr.examples, theme='gradio/soft').launch() |
|
|
|
gr.Markdown( |
|
""" |
|
* [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset) |
|
* [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose) |
|
* [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5)) |
|
""") |
|
|