Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
from itertools import product | |
import torch | |
from pytorch3d.ops import sample_points_from_meshes | |
from pytorch3d.ops.ball_query import ball_query | |
from pytorch3d.ops.knn import _KNN | |
from pytorch3d.utils import ico_sphere | |
from .common_testing import get_random_cuda_device, TestCaseMixin | |
class TestBallQuery(TestCaseMixin, unittest.TestCase): | |
def setUp(self) -> None: | |
super().setUp() | |
torch.manual_seed(1) | |
def _ball_query_naive( | |
p1, p2, lengths1, lengths2, K: int, radius: float | |
) -> torch.Tensor: | |
""" | |
Naive PyTorch implementation of ball query. | |
""" | |
N, P1, D = p1.shape | |
_N, P2, _D = p2.shape | |
assert N == _N and D == _D | |
if lengths1 is None: | |
lengths1 = torch.full((N,), P1, dtype=torch.int64, device=p1.device) | |
if lengths2 is None: | |
lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device) | |
radius2 = radius * radius | |
dists = torch.zeros((N, P1, K), dtype=torch.float32, device=p1.device) | |
idx = torch.full((N, P1, K), fill_value=-1, dtype=torch.int64, device=p1.device) | |
# Iterate through the batches | |
for n in range(N): | |
num1 = lengths1[n].item() | |
num2 = lengths2[n].item() | |
# Iterate through the points in the p1 | |
for i in range(num1): | |
# Iterate through the points in the p2 | |
count = 0 | |
for j in range(num2): | |
dist = p2[n, j] - p1[n, i] | |
dist2 = (dist * dist).sum() | |
if dist2 < radius2 and count < K: | |
dists[n, i, count] = dist2 | |
idx[n, i, count] = j | |
count += 1 | |
return _KNN(dists=dists, idx=idx, knn=None) | |
def _ball_query_vs_python_square_helper(self, device): | |
Ns = [1, 4] | |
Ds = [3, 5, 8] | |
P1s = [8, 24] | |
P2s = [8, 16, 32] | |
Ks = [1, 5] | |
Rs = [3, 5] | |
factors = [Ns, Ds, P1s, P2s, Ks, Rs] | |
for N, D, P1, P2, K, R in product(*factors): | |
x = torch.randn(N, P1, D, device=device, requires_grad=True) | |
x_cuda = x.clone().detach() | |
x_cuda.requires_grad_(True) | |
y = torch.randn(N, P2, D, device=device, requires_grad=True) | |
y_cuda = y.clone().detach() | |
y_cuda.requires_grad_(True) | |
# forward | |
out1 = self._ball_query_naive( | |
x, y, lengths1=None, lengths2=None, K=K, radius=R | |
) | |
out2 = ball_query(x_cuda, y_cuda, K=K, radius=R) | |
# Check dists | |
self.assertClose(out1.dists, out2.dists) | |
# Check idx | |
self.assertTrue(torch.all(out1.idx == out2.idx)) | |
# backward | |
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device) | |
loss1 = (out1.dists * grad_dist).sum() | |
loss1.backward() | |
loss2 = (out2.dists * grad_dist).sum() | |
loss2.backward() | |
self.assertClose(x_cuda.grad, x.grad, atol=5e-6) | |
self.assertClose(y_cuda.grad, y.grad, atol=5e-6) | |
def test_ball_query_vs_python_square_cpu(self): | |
device = torch.device("cpu") | |
self._ball_query_vs_python_square_helper(device) | |
def test_ball_query_vs_python_square_cuda(self): | |
device = get_random_cuda_device() | |
self._ball_query_vs_python_square_helper(device) | |
def _ball_query_vs_python_ragged_helper(self, device): | |
Ns = [1, 4] | |
Ds = [3, 5, 8] | |
P1s = [8, 24] | |
P2s = [8, 16, 32] | |
Ks = [2, 3, 10] | |
Rs = [1.4, 5] # radius | |
factors = [Ns, Ds, P1s, P2s, Ks, Rs] | |
for N, D, P1, P2, K, R in product(*factors): | |
x = torch.rand((N, P1, D), device=device, requires_grad=True) | |
y = torch.rand((N, P2, D), device=device, requires_grad=True) | |
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device) | |
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device) | |
x_csrc = x.clone().detach() | |
x_csrc.requires_grad_(True) | |
y_csrc = y.clone().detach() | |
y_csrc.requires_grad_(True) | |
# forward | |
out1 = self._ball_query_naive( | |
x, y, lengths1=lengths1, lengths2=lengths2, K=K, radius=R | |
) | |
out2 = ball_query( | |
x_csrc, | |
y_csrc, | |
lengths1=lengths1, | |
lengths2=lengths2, | |
K=K, | |
radius=R, | |
) | |
self.assertClose(out1.idx, out2.idx) | |
self.assertClose(out1.dists, out2.dists) | |
# backward | |
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device) | |
loss1 = (out1.dists * grad_dist).sum() | |
loss1.backward() | |
loss2 = (out2.dists * grad_dist).sum() | |
loss2.backward() | |
self.assertClose(x_csrc.grad, x.grad, atol=5e-6) | |
self.assertClose(y_csrc.grad, y.grad, atol=5e-6) | |
def test_ball_query_vs_python_ragged_cpu(self): | |
device = torch.device("cpu") | |
self._ball_query_vs_python_ragged_helper(device) | |
def test_ball_query_vs_python_ragged_cuda(self): | |
device = get_random_cuda_device() | |
self._ball_query_vs_python_ragged_helper(device) | |
def test_ball_query_output_simple(self): | |
device = get_random_cuda_device() | |
N, P1, P2, K = 5, 8, 16, 4 | |
sphere = ico_sphere(level=2, device=device).extend(N) | |
points_1 = sample_points_from_meshes(sphere, P1) | |
points_2 = sample_points_from_meshes(sphere, P2) * 5.0 | |
radius = 6.0 | |
naive_out = self._ball_query_naive( | |
points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius | |
) | |
cuda_out = ball_query(points_1, points_2, K=K, radius=radius) | |
# All points should have N sample neighbors as radius is large | |
# Zero is a valid index but can only be present once (i.e. no zero padding) | |
naive_out_zeros = (naive_out.idx == 0).sum(dim=-1).max() | |
cuda_out_zeros = (cuda_out.idx == 0).sum(dim=-1).max() | |
self.assertTrue(naive_out_zeros == 0 or naive_out_zeros == 1) | |
self.assertTrue(cuda_out_zeros == 0 or cuda_out_zeros == 1) | |
# All points should now have zero sample neighbors as radius is small | |
radius = 0.5 | |
naive_out = self._ball_query_naive( | |
points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius | |
) | |
cuda_out = ball_query(points_1, points_2, K=K, radius=radius) | |
naive_out_allzeros = (naive_out.idx == -1).all() | |
cuda_out_allzeros = (cuda_out.idx == -1).sum() | |
self.assertTrue(naive_out_allzeros) | |
self.assertTrue(cuda_out_allzeros) | |
def ball_query_square( | |
N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str | |
): | |
device = torch.device(device) | |
pts1 = torch.randn(N, P1, D, device=device, requires_grad=True) | |
pts2 = torch.randn(N, P2, D, device=device, requires_grad=True) | |
grad_dists = torch.randn(N, P1, K, device=device) | |
torch.cuda.synchronize() | |
def output(): | |
out = ball_query(pts1, pts2, K=K, radius=radius) | |
loss = (out.dists * grad_dists).sum() | |
loss.backward() | |
torch.cuda.synchronize() | |
return output | |
def ball_query_ragged( | |
N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str | |
): | |
device = torch.device(device) | |
pts1 = torch.rand((N, P1, D), device=device, requires_grad=True) | |
pts2 = torch.rand((N, P2, D), device=device, requires_grad=True) | |
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device) | |
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device) | |
grad_dists = torch.randn(N, P1, K, device=device) | |
torch.cuda.synchronize() | |
def output(): | |
out = ball_query( | |
pts1, pts2, lengths1=lengths1, lengths2=lengths2, K=K, radius=radius | |
) | |
loss = (out.dists * grad_dists).sum() | |
loss.backward() | |
torch.cuda.synchronize() | |
return output | |