AleksanderObuchowski's picture
get some swaaaag
7bb750a
raw
history blame
6.5 kB
import os
from functools import lru_cache
from typing import Dict, List
import plotly.express as px
import streamlit as st
import pandas as pd
from datasets import Dataset, get_dataset_infos, load_dataset
import stanza
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import io
st.set_page_config(
page_title="Eskulap Dataset",
page_icon="馃┖",
layout="wide",
initial_sidebar_state="expanded",
)
BASE_DATASET: str = "lion-ai/pl_med_data"
read_key = os.environ.get('HF_TOKEN', None)
datasets_map = {
"znany_lekarz":
{
"display_name": "Porady",
"description": "Zbi贸r pyta艅 i odpowiedzi odno艣nie medycyny.",
"primary_column": "question",
},
"kor_epikryzy_qa":
{
"display_name": "Dokumentacja - QA",
"description": "Zbi贸r pyta艅 i odpowiedzi do zanonimizowanej dokumentacji medycznej.",
"primary_column": "content",
},
"wikipedia":
{
"display_name": "Wikipedia",
"description": "Zbi贸r pyta艅 i odpowiedzi na podstawie artyku艂贸w z Wikipedii.",
"primary_column": "question",
},
"ulotki_medyczne":
{
"display_name": "Pytania farmaceutyczne",
"description": "Zbi贸r pyta艅 i odpowiedzi na podstawie ulotek medycznych.",
"primary_column": "question",
},
}
dataset_names_map: Dict[str, str] = {k: v["display_name"] for k, v in datasets_map.items()}
reverse_dataset_names_map: Dict[str, str] = {v: k for k, v in dataset_names_map.items()}
@st.cache_resource
def load_stanza_pipeline():
return stanza.Pipeline(lang='pl', processors='tokenize,mwt,pos,lemma')
@st.cache_resource
def list_datasets() -> Dict[str, Dataset]:
"""
Retrieves a list of dataset information.
Returns:
List[Dict[str, str]]: A list of dataset information.
"""
return get_dataset_infos(BASE_DATASET, token=read_key)
def show_examples(dataset_name: str, split: str) -> None:
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name)
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:50]", token=read_key)
st.data_editor(dataset.to_pandas(), use_container_width=True, height=900)
def count_all_examples(datasets: Dict[str, Dataset]) -> None:
count: int = 0
for dataset_name, dataset_info in datasets.items():
count += dataset_info.num_examples
st.metric(label="Total no. of instructions", value=f"{count:,}")
def filter_splits(dataset: Dict[str, Dataset], split: str) -> Dict[str, Dataset]:
"""
Filter the dataset based on the specified split.
Args:
dataset (Dict[str, Dataset]): A dictionary containing dataset information.
split (str): The split to filter the dataset by.
Returns:
Dict[str, Dataset]: A dictionary containing the filtered dataset splits.
"""
dataset_splits: Dict[str, Dataset] = {}
for dataset_name, dataset_info in dataset.items():
if split in dataset_info.splits:
dataset_name = dataset_names_map.get(dataset_name, dataset_name)
dataset_splits[dataset_name] = dataset_info.splits[split]
return dataset_splits
@st.cache_data(show_spinner=False)
def generate_wordcloud(dataset_name, split):
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name)
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:500]", token=read_key)
primary_column = datasets_map[dataset_name]["primary_column"]
text = ""
progress_bar = st.progress(0, text = "Generating wordcloud...")
for i, example in enumerate(dataset[primary_column]):
doc = stanza_pipeline(example)
nouns = [word.lemma for sent in doc.sentences for word in sent.words if word.upos == 'NOUN']
text += " ".join(nouns) + " "
progress_bar.progress((i + 1) / len(dataset[primary_column]), text = f"Generating wordcloud...")
wordcloud = WordCloud(width=600, height=600, background_color='#212c2a', colormap="Greens", contour_width=0, contour_color="#212c2a").generate(text)
progress_bar.empty()
plt.figure(figsize=(6, 6), facecolor='#212c2a')
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
# Save the plot to a bytes buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, facecolor='#212c2a')
buf.seek(0)
# Display the image in Streamlit
st.image(buf, use_column_width=True)
_, col, _ = st.columns([1, 2, 1])
with col:
split: str = "processed"
datasets: Dict[str, Dataset] = list_datasets()
stanza_pipeline = load_stanza_pipeline()
# st.write(datasets)
filtered_datasets: Dict[str, Dataset] = filter_splits(datasets, split)
# st.write(filtered_datasets)
image = st.image("Eskulap.png", use_column_width=True)
count_all_examples(filtered_datasets)
distribution = {
"dataset": list(filtered_datasets.keys()),
"count": [split.num_examples for split in filtered_datasets.values()],
}
distribution_df = pd.DataFrame(distribution)
# Create a pie chart showing the number of examples per dataset
fig = px.pie(
distribution_df,
names="dataset",
values="count",
hover_name="dataset",
title=f"Data distribution",
labels={"label": "Dataset", "value": "Number of Examples"},
color_discrete_sequence=px.colors.sequential.Blugrn,
hole=0.3,
)
# Update layout for better readability
# fig.update_traces(textposition="inside", textinfo="value+label")
fig.update_traces(textposition='none')
fig.update_layout(legend_title_text="Datasets", uniformtext_minsize=12, uniformtext_mode="hide")
chart = st.plotly_chart(fig, use_container_width=True)
dataset_name = st.selectbox("Select a dataset", list(filtered_datasets.keys()))
st.write(f"### {dataset_name}")
st.write(datasets_map[reverse_dataset_names_map.get(dataset_name)]["description"])
st.markdown("***")
col1, col2 = st.columns(2)
with col1:
st.write(f"### Sample data")
show_examples(dataset_name, split)
with col2:
st.write(f"### Wordcloud")
generate_wordcloud(dataset_name, split)
_, col, _ = st.columns([1, 2, 1])
with col:
st.button("Made with 鉂わ笍 by thelion.ai", use_container_width=True, disabled=True)
st.write("Intersted in the project? Contact us : contact@thelion.ai")