Spaces:
Runtime error
Runtime error
import os | |
from functools import lru_cache | |
from typing import Dict, List | |
import plotly.express as px | |
import streamlit as st | |
import pandas as pd | |
from datasets import Dataset, get_dataset_infos, load_dataset | |
import stanza | |
import matplotlib.pyplot as plt | |
from wordcloud import WordCloud | |
import io | |
st.set_page_config( | |
page_title="Eskulap Dataset", | |
page_icon="馃┖", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
) | |
BASE_DATASET: str = "lion-ai/pl_med_data" | |
read_key = os.environ.get('HF_TOKEN', None) | |
datasets_map = { | |
"znany_lekarz": | |
{ | |
"display_name": "Porady", | |
"description": "Zbi贸r pyta艅 i odpowiedzi odno艣nie medycyny.", | |
"primary_column": "question", | |
}, | |
"kor_epikryzy_qa": | |
{ | |
"display_name": "Dokumentacja - QA", | |
"description": "Zbi贸r pyta艅 i odpowiedzi do zanonimizowanej dokumentacji medycznej.", | |
"primary_column": "content", | |
}, | |
"wikipedia": | |
{ | |
"display_name": "Wikipedia", | |
"description": "Zbi贸r pyta艅 i odpowiedzi na podstawie artyku艂贸w z Wikipedii.", | |
"primary_column": "question", | |
}, | |
"ulotki_medyczne": | |
{ | |
"display_name": "Pytania farmaceutyczne", | |
"description": "Zbi贸r pyta艅 i odpowiedzi na podstawie ulotek medycznych.", | |
"primary_column": "question", | |
}, | |
} | |
dataset_names_map: Dict[str, str] = {k: v["display_name"] for k, v in datasets_map.items()} | |
reverse_dataset_names_map: Dict[str, str] = {v: k for k, v in dataset_names_map.items()} | |
def load_stanza_pipeline(): | |
return stanza.Pipeline(lang='pl', processors='tokenize,mwt,pos,lemma') | |
def list_datasets() -> Dict[str, Dataset]: | |
""" | |
Retrieves a list of dataset information. | |
Returns: | |
List[Dict[str, str]]: A list of dataset information. | |
""" | |
return get_dataset_infos(BASE_DATASET, token=read_key) | |
def show_examples(dataset_name: str, split: str) -> None: | |
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name) | |
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:50]", token=read_key) | |
st.data_editor(dataset.to_pandas(), use_container_width=True, height=900) | |
def count_all_examples(datasets: Dict[str, Dataset]) -> None: | |
count: int = 0 | |
for dataset_name, dataset_info in datasets.items(): | |
count += dataset_info.num_examples | |
st.metric(label="Total no. of instructions", value=f"{count:,}") | |
def filter_splits(dataset: Dict[str, Dataset], split: str) -> Dict[str, Dataset]: | |
""" | |
Filter the dataset based on the specified split. | |
Args: | |
dataset (Dict[str, Dataset]): A dictionary containing dataset information. | |
split (str): The split to filter the dataset by. | |
Returns: | |
Dict[str, Dataset]: A dictionary containing the filtered dataset splits. | |
""" | |
dataset_splits: Dict[str, Dataset] = {} | |
for dataset_name, dataset_info in dataset.items(): | |
if split in dataset_info.splits: | |
dataset_name = dataset_names_map.get(dataset_name, dataset_name) | |
dataset_splits[dataset_name] = dataset_info.splits[split] | |
return dataset_splits | |
def generate_wordcloud(dataset_name, split): | |
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name) | |
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:500]", token=read_key) | |
primary_column = datasets_map[dataset_name]["primary_column"] | |
text = "" | |
progress_bar = st.progress(0, text = "Generating wordcloud...") | |
for i, example in enumerate(dataset[primary_column]): | |
doc = stanza_pipeline(example) | |
nouns = [word.lemma for sent in doc.sentences for word in sent.words if word.upos == 'NOUN'] | |
text += " ".join(nouns) + " " | |
progress_bar.progress((i + 1) / len(dataset[primary_column]), text = f"Generating wordcloud...") | |
wordcloud = WordCloud(width=600, height=600, background_color='#212c2a', colormap="Greens", contour_width=0, contour_color="#212c2a").generate(text) | |
progress_bar.empty() | |
plt.figure(figsize=(6, 6), facecolor='#212c2a') | |
plt.imshow(wordcloud, interpolation='bilinear') | |
plt.axis('off') | |
plt.tight_layout(pad=0) | |
# Save the plot to a bytes buffer | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, facecolor='#212c2a') | |
buf.seek(0) | |
# Display the image in Streamlit | |
st.image(buf, use_column_width=True) | |
_, col, _ = st.columns([1, 2, 1]) | |
with col: | |
split: str = "processed" | |
datasets: Dict[str, Dataset] = list_datasets() | |
stanza_pipeline = load_stanza_pipeline() | |
# st.write(datasets) | |
filtered_datasets: Dict[str, Dataset] = filter_splits(datasets, split) | |
# st.write(filtered_datasets) | |
image = st.image("Eskulap.png", use_column_width=True) | |
count_all_examples(filtered_datasets) | |
distribution = { | |
"dataset": list(filtered_datasets.keys()), | |
"count": [split.num_examples for split in filtered_datasets.values()], | |
} | |
distribution_df = pd.DataFrame(distribution) | |
# Create a pie chart showing the number of examples per dataset | |
fig = px.pie( | |
distribution_df, | |
names="dataset", | |
values="count", | |
hover_name="dataset", | |
title=f"Data distribution", | |
labels={"label": "Dataset", "value": "Number of Examples"}, | |
color_discrete_sequence=px.colors.sequential.Blugrn, | |
hole=0.3, | |
) | |
# Update layout for better readability | |
# fig.update_traces(textposition="inside", textinfo="value+label") | |
fig.update_traces(textposition='none') | |
fig.update_layout(legend_title_text="Datasets", uniformtext_minsize=12, uniformtext_mode="hide") | |
chart = st.plotly_chart(fig, use_container_width=True) | |
dataset_name = st.selectbox("Select a dataset", list(filtered_datasets.keys())) | |
st.write(f"### {dataset_name}") | |
st.write(datasets_map[reverse_dataset_names_map.get(dataset_name)]["description"]) | |
st.markdown("***") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.write(f"### Sample data") | |
show_examples(dataset_name, split) | |
with col2: | |
st.write(f"### Wordcloud") | |
generate_wordcloud(dataset_name, split) | |
_, col, _ = st.columns([1, 2, 1]) | |
with col: | |
st.button("Made with 鉂わ笍 by thelion.ai", use_container_width=True, disabled=True) | |
st.write("Intersted in the project? Contact us : contact@thelion.ai") | |